The White House Memory Safety Appeal Is A Security Red Herring

In the Holy Programming Language Wars, the lingua franca of system programming – also known as C – is often lambasted for being unsecure, error-prone, and plagued with more types of behavior that are undefined than ones that are defined by the C standards. Many programming languages were said to be ‘C killers’, yet C is still alive today. That didn’t stop the US White House’s Office of the National Cyber Director (ONCD) from putting out a report in which both C and C++ got lambasted for being ‘unsafe’ when it came to memory management.

The full report (PDF) is pretty light on technical details, while citing only blog posts by Microsoft and Google as its ‘expert sources’. The claim that memory safety issues are the primary cause of CVEs is not substantiated, or at least ignores the severity of CVEs when looking at the CISA statistics for active exploits. Beyond this call for ‘memory safety’, the report then goes on to effectively call for more testing and validation, while kicking in doors that were opened back in the 1970s already with the Steelman requirements and the High Order Language Working Group (HOLWG) of 1975.

What truly is the impact and factual basis of the ONCD report?

Continue reading “The White House Memory Safety Appeal Is A Security Red Herring”

C Is The Greenest Programming Language

Have you ever wondered if there is a correlation between a computer’s energy consumption and the choice of programming languages? Well, a group of Portuguese university researchers did and set out to quantify it. Their 2017 research paper entitled Energy Efficiency across Programming Languages / How Do Energy, Time, and Memory Relate?  may have escaped your attention, as it did ours.

Abstract: This paper presents a study of the runtime, memory usage and energy consumption of twenty seven well-known soft- ware languages. We monitor the performance of such lan- guages using ten different programming problems, expressed in each of the languages. Our results show interesting find- ings, such as, slower/faster languages consuming less/more energy, and how memory usage influences energy consump- tion. We show how to use our results to provide software engineers support to decide which language to use when energy efficiency is a concern.

While we might take issue with some of the programming languages selected as being “well known”, the project was very thorough and quite well documented. Most people would take for granted that a computer program which runs faster will consume less energy. But this might not always be true, as other factors enter into the power consumption equation besides speed. The team used a collection of ten standard algorithms from the Computer Language Benchmarks Game project (formerly known as The Great Computer Language Shootout) as the basis for their evaluations.

Last year they updated the functional language results, and all the setups, benchmarks, and collected data can be found here. Check out the paper for more details. Have your choice of programming language ever been influenced by energy consumption?

Need A New Programming Language? Try Zig

Maybe you’ve heard of it, maybe you haven’t. Zig is a new programming language that seems to be growing in popularity. Let’s do a quick dive into what it is, why it’s unique, and what sort of things you would use it for. (Ed Note: Other than “for great justice“, naturally.)

What Is It?

You’ve likely heard of Rust as it has made significant inroads in critical low-level infrastructures such as operating systems and embedded microcontrollers. As a gross oversimplification, it offers memory safety and many traditional runtime checks pushed to compile time. It has been the darling of many posts here at Hackaday as it offers some unique advantages. With Rust on the rise, it makes sense that there might be some space for some new players. Languages like Julia, Go, Swift, and even Racket are all relative newcomers vying for the highly coveted mindshare of software engineers everywhere.

So let’s talk Zig. In a broad sense, Zig is really trying to provide some of the safety of Rust with the simplicity and ease of C. It touts a few core features such as:

  • No hidden control flow
  • No hidden memory allocations
  • No preprocessor, no macros
  • First-class support for optional standard library
  • Interoperable by design
  • Adjustable Runtime Safety
  • Compile-time code-execution

Continue reading “Need A New Programming Language? Try Zig”

Gaming In Different Languages

One of the perks of using older hardware is its comparative simplicity and extensive documentation. After years or decades of users programming on a platform, the amount of knowledge available for it can become extensive. This is certainly the case with the 6502 microprocessor, used in old Apple computers and some video game systems from the ’80s. The extensive amount of resources available make it a prime candidate in exploring various programming languages, and their advantages and disadvantage.

This project looks into those differences using a robot game, which has been programmed four different ways in three languages. [Joey] created the game in Python first and then began to port it to the 65C02, a CMOS variant of the 6502. The first iteration is its assembly language, and then a second iteration with optimized assembly code. From there, he ports it to C and then finally to Forth. Each version of the game is available to play in a browser using an emulator to run the 6502 hardware.

Since the games run in the browser, other tools are available to examine the way the game runs in each language. Registers can be viewed in real time, as well as the values stored in the memory. It’s an interesting look at an old piece of hardware and of its inner workings. For an even deeper dive into the 6502, it’s possible to build a working computer on breadboards using one.

A Programming Language That Lets You Code With Pixels

This programming language gives you programs that resemble modern art. It’s fortunately a feature of the language, dubbed Piet after the famed abstract painter Piet Mondrian.

The language uses 20 distinct colors, with the colors cycling from red to yellow to green to cyan to blue to magenta and the lightness cycling from light to normal to dark. The code is formed from graphics made of the recognized colors, with individual pixels holding much of the information. Stacks are used for storing data values, that can exist as integers or as Unicode characters with the proper commands applied.

Numbers in the program are represented by colors, while black blocks indicates edges and white blocks indicate free zones. The interpreter physically slides through blocks in the direction of the Direction Pointer (DP), with hue changes indicating different commands based on the steps of the change.

To execute a program, the Piet language interpreter begins in the upper left codel (or individual code block) of the program, maintaining a DP initially pointed to the right and a Codel Chooser (CC) initially pointed to the left. The DP and CC turn right, left, down, or up depending on the execution.

There is currently a small community of coders developing sample programs, interpreters, IDEs, and compilers for the language. You can check out some of the sample programs here.

Tony Brooker And Autocode – The First High-level Language

The field of computer science has undeniably changed the world for virtually every single person by now. Certainly for you as Hackaday reader, but also for everyone around you, whether they’re working in the field themselves, or are simply enjoying the fruits of convenience it bears. What was once a highly specialized niche field for a few chosen people has since grown into a discipline that not only created one of the biggest industry in modern times, but also revolutionized every other industry, some a few times over.

The fascinating part about all this is the relatively short time span it took to get here, and with that the privilege to live in an era where some of the pioneers and innovators, the proverbial giants whose shoulders every one of us is standing on, are still among us. Sadly, one of them, [Tony Brooker], a pioneer of the early programming language concept known as Autocode, passed away in November. Reaching the remarkable age of 94, the truly sad part however is that this might be the first time you hear his name, and there’s a fair chance you never heard of Autocode either.

But Autocode was probably the first high-level computer language, and as such played a fundamental role in the development of whatever you’re coding in today. So to honor the memory of [Tony Brooker], let’s remember the work he did with Autocode, and the leap in computer science history that it represented.

Continue reading “Tony Brooker And Autocode – The First High-level Language”

Why Ada Is The Language You Want To Be Programming Your Systems With

The Ada programming language was born in the mid-1970s, when the US Department of Defense (DoD) and the UK’s Ministry Of Defence sought to replace the hundreds of specialized programming languages used for the embedded computer systems that increasingly made up essential parts of military projects.  Instead, Ada was designed to be be a single language, capable of running on all of those embedded systems, that offered the same or better level of performance and reliability.

With the 1995 revision, the language also targeted general purpose systems  and added support for object-oriented programming (OOP) while not losing sight of the core values of reliability, maintainability and efficiency. Today, software written in Ada forms the backbone of not only military hardware, but also commercial projects like avionics and air-traffic control systems. Ada code controls rockets like the Ariane 4 and 5, many satellites, and countless other systems where small glitches can have major consequences.

Ada might also be the right choice for your next embedded project. Continue reading “Why Ada Is The Language You Want To Be Programming Your Systems With”