Cold War Spying And The Questionable Use Of Smuggled Blueprints In Developing Supersonic Airliners

Three views of a Boeing 2707-300.
Three views of a Boeing 2707-300.

Although spying is a time-honored tradition, the sheer scope of it reached a fever pitch during the Cold War, when everyone was spying on everyone, and conceivably for both sides at the same time. In an era where both McCarthyism and the character of James Bond enjoyed strong popularity, it should come as no surprise that a project of geopolitical importance like the development of the world’s first supersonic airliner would come amidst espionage, as well as accusations thereof. This is the topic of a documentary that recently aired on Channel 4 in the UK called Concorde: The Race for Supersonic, yet what is the evidence that the Soviet Tu-144 truly was just a Concorde clone, a derogatory nicknamed ‘Concordski’?

At the time that the Concorde was being developed, there wasn’t just the competition from the Tu-144 team, but also the Boeing 2702 (pictured) and Lockheed L-2000, with the latter two ultimately being cancelled. Throughout development, all teams converged on a similar design, with a delta wing and similar overall shape. Differences included the drooping nose (absent on Boeing 2707-300) and use of canards (present on Tu-144 and 2707-200), and wildly different engines, with the production Tu-144S requiring an afterburner on its Kuznetsov NK-144A engines just like the Concorde, before the revised Tu-144D removing the need for afterburners with the Koliesov RD36-51 engines.

Although generally classified as a ‘failure’, the Tu-144’s biggest issues appear to have been due to the pressure on the development team from Soviet leadership. Once the biggest issues were being fixed (Tu-144D) it saw continued use for cargo use and even flying missions for NASA (Tu-144LL) until 1999. Although Soviet spies were definitely caught with Concorde blueprints, the practical use of these for the already overburdened Tu-144 development team in terms of reverse-engineering and applying it to the Tu-144’s design would be limited at best, which would seem to be reflected in the final results.

Meanwhile, although supersonic airliners haven’t been flying since the Concorde retired in 2003, the Lockheed Martin X-59 Quesst supersonic airplane that is being built for NASA looks set to fix the sonic boom and fuel usage issues that hampered supersonic flight. After the L-2000 lost to Boeing so many decades ago, it might be Lockheed that has the last laugh in the race towards supersonic flight for airliners.

(Top image: Tu-144 with distinctive droop nose at the MAKS-2007 exhibition)

Air-Breathing Rocket Engine Promises Future Space Planes

If you are a certain age, you probably remember the promise of supersonic transports. The Concorde took less than 4 hours to go across the Atlantic, but it stopped flying in 2003 and ended commercial supersonic passenger flights  But back in the 1970s, we thought the Concorde would give way not to older technology, but to newer. After all, man had just walked on the moon and suborbital transports could make the same trip in 30 minutes and — according to Elon Musk — go between any two points on the Earth in an hour or less. A key component to making suborbital flights as common as normal jet travel is a reasonable engine that can carry a plane to the edge of space. That’s where the UK’s Sabre engine comes into play. Part jet and part rocket, the engine uses novel new technology and two different operating modes to power the next generation of spaceplane. The BBC reports that parts of the new engine will undergo a new phase of testing next month.

The company behind the technology, Reaction Engines, Ltd, uses the engine in an air-breathing jet mode until it hits 5.5 times the speed of sound. Then the same engine becomes a rocket and can propel the vehicle at up to 25 times the speed of sound.

Continue reading “Air-Breathing Rocket Engine Promises Future Space Planes”

Retrotechtacular: Supersonic Transport Initiatives

In the early days of PBS member station WGBH-Boston, they in conjunction with MIT produced a program called Science Reporter. The program’s aim was explaining modern technological advances to a wide audience through the use of interviews and demonstrations. This week, we have a 1966 episode called “Ticket Through the Sound Barrier”, which outlines the then-current state of supersonic transport (SST) initiatives being undertaken by NASA.

MIT reporter and basso profondo [John Fitch] opens the program at NASA’s Ames research center. Here, he outlines the three major considerations of the SST initiative. First, the aluminium typically used in subsonic aircraft fuselage cannot withstand the extreme temperatures caused by air friction at supersonic speeds. Although the Aérospatiale-BAC Concorde was skinned in aluminium, it was limited to Mach 2.02 because of heating issues. In place of aluminium, a titanium alloy with a melting point of 3,000°F is being developed and tested.

Continue reading “Retrotechtacular: Supersonic Transport Initiatives”