Android Development 101 – Part 5:DroidDraw & Information Tracker Completed



In this tutorial we are going to cover completing the Information Tracker using DroidDraw to design the layout of this project. This will give you insight into an alternative to the stock layout manager in the eclipse environment and how DroidDraw functions. DroidDraw can be your best friend when designing Android applications or your worse enemy if you don’t know the layout of the application and how it works. This will show you the basics to this program and how to incorporate it into your development process.  This is significantly easier than the previous post but will teach skills on other programs to help development such as DroidDraw.

Continue reading “Android Development 101 – Part 5:DroidDraw & Information Tracker Completed”

Cray-inspired PC Case

35 years following its introduction, and despite fewer than 100 systems deployed, the Cray-1 remains one of the most recognizable computers in history; it is a timeless icon of pure supercomputer badassery. Custom case builder [Daryl Brach] pays homage to this classic with his third-scale model housing two modern PC motherboards.

In an interesting reversal, the base of the model — the upholstered bench that housed cooling and power distribution for the original Cray — holds the PC motherboards and storage, while the upper section is currently just for show but may house a water cooling rig in the future. The paint scheme is inspired by the Cray-1 on display at the Smithsonian, though Daryl’s model does make a few modern concessions such as LED lighting. Hinged panels in the base flip open to access the systems’ optical drives (perhaps to watch Tron on DVD).

The Cray-1 ran at 80 MHz and could house up to eight megabytes of memory…just about unfathomable performance in its day. It’s not clear what processors [Daryl] chose to outfit his system with, but regardless, even an entry-level modern PC doesn’t just run circles around its progenitor, it runs ray-traced glass spheres around it. Technology marches on, but good design never goes out of style.

Recyclebot Digests Milk Jugs To Feed MakerBot

The old saying, “garbage in, garbage out” may need to be re-evaluated. Students at Victoria University of Wellington are developing a machine that recycles old milk jugs, extruding an HDPE plastic filament that can then be fed into a MakerBot for 3D printing.

The process involves grinding the plastic into small pieces, then pressing these through a heater and extruder plate to produce a continuous bead of the proper diameter for the MakerBot. Nichrome wire — the stuff of hair dryers and toasters — forms the heating element, and this must be regulated within a specific temperature range for different plastics. The initial grinder design is hand-cranked, but they are working toward a fully automated system. It appears that the machine could also recycle old MakerBot output, provided the grinder has sufficient torque.

So one man’s trash really is another man’s treasure. We envision a future of crazy-haired makers rooting through their neighbors’ garbage, feeding their Recyclebots’ hoppers “Mr. Fusion” style.

Giant Insect Rover Works For Us

[youtube=http://www.youtube.com/watch?v=vwFrCpYavt4]

ATHLETE, or the All Terrain Hex-Limbed Extra Terrestrial Explorer, looks pretty cool. This Hexapod is actually a pair of 3 legged robots that have joined together to haul some cargo off the top of stationary module. While this time-lapse shows it going pretty slowly, you get a hint at the end that it isn’t required to be quite so lethargic. One of the really cool things about this robot is the fact that the legs are multi purpose. It has a “tool belt” from which it can pull different attachments for its feet. There are many more videos available on their site.

[via BotJunkie]

PCB Trace Antenna

If you’re working on a device that includes RF wireless, [Colin’s] Guide to PCB Trace Antenna Design might clear some headaches when sending off for PCBs. While it is directed at devices transmitting at 2.4GHz, the techniques and recommended equipment (read: espresso smith charts and network analyzers) should work for almost any frequency. While trace antennas aren’t as easy to implement as a measured wire, the space benefits make up for the difficulty. Unless you don’t mind how larger your project is, did someone say cantenna?

Wine Cask Sensor Suite

As part of his Master’s dissertation [Salvador Faria] built a sensor suite for wine monitoring. He needed to develop a method of tracking data inside the wine cask during the vinification process. What he came up with eclipses the wine cellar temperature monitors we’ve seen before.

He picked up pH, temperature, carbon dioxide, alcohol, and relative humidity sensors from familiar vendors like Seeed, Parallax, and SparkFun. His original idea was to develop a floating probe that housed the entire package but he had quite a bit of trouble getting everything inside and maintaining buoyancy. The solution was a two-part probe; the stationary portion seen mounted on top of the cask houses the microcontroller, RF 433 MHz transmitter, and the gas sensors. Tethered to that is a floating probe that measures pH and temperature. Data is sent over radio frequency to an HTTP POST server every minute.

Making Home Automation Modules Talk To Each Other


[Danny] has been working on an RNET to Sonos bridge. These are devices from two different manufacturers used to facility whole-house audio systems. Usually there’s a main controller with a large color screen and then several satellite controllers like the one above which have some of the features but at a lower cost. Normally you’re limited to using hardware from one line of devices in order to get them to talk to each other but [Danny’s] saying ‘no way’ to that restriction.

His latest post has some of the details on how he pulls this off. He used an RS232 serial connection with an Arduino to sniff out the data stream from the RNET base unit. Once he figured out the protocol he used the Arduino to parse all incoming commands, format them for the Sonos controller, and send it over the Ethernet cable to that device. He’s got everything tied together and working. Take a look at the proof in the clip after the break.

Continue reading “Making Home Automation Modules Talk To Each Other”