Nin10do Retro Game Console Stands Above All Others

If your living room entertainment area is not home to a Raspberry Pi based retro game console, you no longer have any excuses. Break out your soldering iron and volt/ohm meter and preheat the 3d printer, because you will not be able to resist making one of the best retro game consoles we’ve ever seen – The Nin10do.

It’s creator is [TheDanielSpies]. Not only did he make the thing from scratch, he’s done an extraordinary job documenting all the build details, making it easier than ever to follow in his footsteps and make one of your own. He designed the case in Autodesk and printed it out with XT Co-polyester filament. He uses a Raspi of course, along with an ATX Raspi board from Low Power Labs to make the power cycling easier. There’s even a little stepper that opens and closes a cover that hides the four USB ports for controllers. Everything is tied together with Python, making the project super easy to modify and customize to your liking.

All code, schematics and .stl files are available on his github. It even has its own Facebook page! Be sure to check out the vast array of videos to help you along with your build.

Continue reading “Nin10do Retro Game Console Stands Above All Others”

Homebrew ECU Increases Mazda Zoom

A big problem with most modern cars is the sheer number of parts and systems that are not user serviceable. This is a big departure from cars of just decades ago that were designed to be easily worked on by the owner. To that end, [Anthony] aka [fuzzymonkey] has tackled what is normally the hardest thing to work on in modern cars: the Engine Control Unit. (Older posts on this project can be found at [Anthony]’s old project log.)

Every sensor in any modern car is monitored by a computer called the Engine Control Unit (ECU), and the computer is responsible for taking this data and making decisions on how the car should be running. In theory a custom ECU would be able to change any behavior of the car, but in practice this is extremely difficult due to the sheer number of operations required by the computer and the very specific tolerances of a modern engine.

The custom ECU that Anthony has created for his Mazda MX-5 (a Miata for those in North America) is based on the PIC18F46K80 microcontroller, and there are actually two units involved. The first handles time-sensitive operations like monitoring the engine cam position and engine timing, and the other generates a clock signal for the main unit and also monitors things like cooling temperature and controlling idle speed. The two units communicate over SPI.

[Anthony]’s custom ECU is exceptional in that he’s gotten his car running pretty well. There are some kinks, but hopefully he’ll have a product that’s better than the factory ECU by allowing him to change anything from throttle response and engine timing to the air-fuel ratio. There have been a few other attempts to tame the ECU beast in the past, but so far there isn’t much out there.

Continue reading “Homebrew ECU Increases Mazda Zoom”

Decapping The CC2630 And CC2650

[Jelmer] got curious about the TI CC26XX wireless MCUs and did a little decapping.

TI sells four different models of their CC26XX wireless MCUs. Three support one of the following: RF4CE, Zigbee/6LoWPAN, and Bluetooth and a further model which supports all protocols. Each IC has the same baseline specification: 128Kb Flash, 20Kb RAM and 15 GPIOs. cc26xx_nitric[Jelmer] was curious to know if the price difference was all in the software. And in order to verify this decided that decapping was the only thing to do!

We’ve covered decapping using Nitric acid before, as well as lower tech techniques. Luckily [Jelmer] had access to Nitric acid and a fume hood, not the easiest items to get hold of outside of a research lab (checkout the video of the IC bubbling away below). [Jelmer] got some great die shots under an optical microscope and was able to confirm that the die markings are identical. This opens the door to future hacks, which might allow the cheaper models to be re-flashed, expanding their capabilities.

Continue reading “Decapping The CC2630 And CC2650”