How Hackerspaces Spend Money

Running a hackerspace is no easy task. One of the biggest issues is money — how to collect in dues and donations, managing it, and how to spend it. Everyone has different interests and would like to see the budget go to their favorite project or resource. Milwaukee Makerspace has come up with a novel way to handle this. Members pay $40 a month in dues. $35 of that goes into the general budget. The member themselves can pick where the last $5 goes.

Using the hackerspace’s software, members chose where their $5 goes each month. It can all be spent in one area or split up among different resources at the hackerspace. Members choose from many different interests like the 3D printing area, the laser lab, the forge, or specific projects like the power racing series. This results in a budget for each area which can be used for materials and parts. It also gives the hackerspace board of directors information on which resources people are interested in, and which they aren’t.

In the current budget, no one is supporting the anodizing area, but lots of people are supportingĀ the laser lab. This is just the sort of information the board could use when planning. Perhaps they could store the anodizing tools and expand the laser lab. Click through to the link above and see how this year’s cash voting panned out.

Of course, all this only works if you have a hackerspace with plenty of active members. In Milwaukee’s case, they have about 300 members. Would this work for your hackerspace? Let us know down in the comments!

Flowing Light Art Inspired By Plankton

With today’s technology, art can be taken in directions that have never before been possible. Taking advantage of this, [teamlab] — an art collective from Japan — have unveiled an art installation that integrates the attendee into the spectacle. In the dark room of the piece ‘Moving Creates Vortices and Vortices Create Movement,‘ you are the brush that paints the flowing display.

Inspired by the movement of ocean plankton, this borrows your movement to create tapestries of light with mirrored walls to aggrandize the effect. As attendees walk about the room, their movements are tracked and translated into flowing patterns projected onto the ground. The faster the people move, the greater the resultant flow. Even those who have stopped to take in the scene are themselves still part of it; their idle forms mimic boulders in a river — as eddies would churn about the obstacle, so too does the light flow around the attendee.

Continue reading “Flowing Light Art Inspired By Plankton”

Why Is Donald Duck On The Radio? Math Behind Single Sideband Explained

AM, or amplitude modulation, was the earliest way of sending voice over radio waves. That makes sense because it is easy to modulate a signal and easy to demodulate it, as well. A carbon microphone is sufficient to crudely modulate an AM signal and diode — even a piece of natural crystal — will suffice to demodulate it. Outside of broadcast radio, most AM users migrated to single side band or SSB. On an AM receiver that sounds like Donald Duck, but with a little work, it will sound almost as good as AM, and in many cases better. If you want a better understanding of how SSB carries audio, have a look at [Radio Physics and Electronics] video on the subject.

The video covers the math of what you probably already know: AM has a carrier and two identical side bands. SSB suppresses the carrier and one redundant side band. But the math behind it is elegant, although you probably ought to know some trigonometry. Don’t worry though. At the end of the video, there’s a practical demonstration that will help even if you are math challenged.

Continue reading “Why Is Donald Duck On The Radio? Math Behind Single Sideband Explained”