World’s Cheapest And Possibly Worst IR Camera

Don’t blame us for the title. [CCrome] admits it may well be the cheapest and worst IR camera available. The concept is surprisingly simple. Mount a cheap Harbor Freight non-contact thermometer on a 3D printer carriage and use it to scan the target. The design files are available on GitHub.

There is, of course, an Arduino to grab the data and send it to the PC. Some Python code takes care of converting it into an image.

Perhaps you don’t need a camera, but having a way to communicate with an $11 IR temperature sensor might come in handy someday. You do have to mash the measurement button down, so [CCrome] used the 3D printer to make a clamp for the button that also holds the POGO pins to the PCB. We would have been tempted to solder across the switch and also solder the wires to the pad. But, then again, you need a 3D printer for the project anyway.

Don’t expect the results you would get from a real thermal sensor. If you want that, you may have to build it yourself or open your wallet wide. If you need some inspiration for a use case, look at the thermal camera contest from a few years back.

Creating Methane From Captured Carbon Dioxide And The Future Of Carbon Capture

There’s something intrinsically simple about the concept of carbon (CO2) capture: you simply have the CO2 molecules absorbed or adsorbed by something, after which you separate the thus captured CO2 and put it somewhere safe. Unfortunately, in physics and chemistry what seems easy and straightforward tends to be anything but simple, let alone energy efficient. While methods for carbon capture have been around for decades, making it economically viable has always been a struggle.

This is true both for carbon capture and storage/sequestration (CCS) as well as carbon capture and utilization (CCU). Whereas the former seeks to store and ideally permanently remove (sequester) carbon from the atmosphere, the latter captures carbon dioxide for use in e.g. industrial processes.

Recently, Pacific Northwest National Laboratory (PNNL) has announced a breakthrough CCU concept, involving using a new amine-based solvent (2-EEMPA) that is supposed to be not only more efficient than e.g. the previously commonly used MEA, but also compatible with directly creating methane in the same process.

Since methane forms the major component in natural gas, might this be a way for CCU to create a carbon-neutral source of synthetic natural gas (SNG)? Continue reading “Creating Methane From Captured Carbon Dioxide And The Future Of Carbon Capture”

DIY Solar Ebike Goes Around The World, We Hope

[Mark Havran] is on a mission to complete a solo trip around the world on his bicycle. For such a long and arduous trip, unsupported by anything other than what he and his bike can carry, he has devised a unique vehicle with everything he needs to accomplish his journey. This bike has plenty of things we’ve seen before, such as solar panels and an electric motor, but plenty of things that are completely novel as well.

For such long-distance trips, the preferred style of bike for most is a recumbent. This allows the rider to take a more relaxed position while riding and is much more efficient than an upright bike as well. [Mark]’s bike also uses a hub motor in the front wheel powered by a set of lithium ion battery packs. The bike also utilizes four solar panels with three charge controllers (to reduce the impacts of panel shading) laid out with three of the panels on a trailer and a single panel above the bike to give him some shade while riding. [Mark] also built solar tracking abilities into each of the two arrays, allowing the solar panels to automatically rotate around the trailer and bike to more efficiently capture sunlight than a statically-mounted set of panels would be able to. They can also be manually controlled in case of high winds.

From the video linked below, we can see a number of other added features to the bike that will enable it to make such a long trip. First, he is getting a new motor which has a number of improvements over his old one, which he put over 30,000 kilometers on. Second, there are some safety features that deserve a mention such as his lighting setup borrowed from emergency response vehicles, and even includes a fire extinguisher for any catastrophic electrical failures. Of course, if you aren’t optimizing your recumbent electric bike for long distance there are some other modifications you could make to it as well to improve its off-road abilities. Best of luck, Mark!

Continue reading “DIY Solar Ebike Goes Around The World, We Hope”

the microGPS pipeline

MicroGPS Sees What You Overlook

GPS is an incredibly powerful tool that allows devices such as your smartphone to know roughly where they are with an accuracy of around a meter in some cases. However, this is largely too inaccurate for many use cases and that accuracy drops considerably when inside such as warehouse robots that rely on barcodes on the floor. In response, researchers [Linguang Zhang, Adam Finkelstein, Szymon Rusinkiewicz] at Princeton have developed a system they refer to as MicroGPS that uses pictures of the ground to determine its location with sub-centimeter accuracy.

The system has a downward-facing monochrome camera with a light shield to control for exposure. Camera output feeds into an Nvidia Jetson TX1 platform for processing. The idea is actually quite similar to that of an optical mouse as they are often little more than a downward-facing low-resolution camera with some clever processing. Rather than trying to capture relative position like a mouse, the researchers are trying to capture absolute position. Imagine picking up your mouse, dropping it on a different spot on your mousepad, and having the cursor snap to a different part of the screen. To our eyes that are quite far away from the surface, asphalt, tarmac, concrete, and carpet look quite uniform. But to a macro camera, there are cracks, fibers, and imperfections that are distinct and recognizable.

They sample the surface ahead of time, creating a globally consistent map of all the images stitched together. Then while moving around, they extract features and implement a voting method to filter out numerous false positives. The system is robust enough to work even a month after the initial dataset was created on an outside road. They put leaves on the ground to try and fool the system but saw remarkably stable navigation.

Their paper, code, and dataset are all available online. We’re looking forward to fusion systems where it can combine GPS, Wifi triangulation, and MicroGPS to provide a robust and accurate position.

Video after the break.

Continue reading “MicroGPS Sees What You Overlook”