Synthesizing 360-degree Views From Single Source Images

ZeroNVS is one of those research projects that is rather more impressive than it may look at first glance. On one hand, the 3D reconstructions — we urge you to click that first link to see them — look a bit grainy and imperfect. But on the other hand, it was reconstructed using a single still image as an input.

Most results look great, but some — like this bike visible through a park bench — come out a bit strange. A valiant effort for a single-image input, all things considered.

How is this done? It’s NeRFs (neural radiance fields) which leverages machine learning, but with yet another new twist. Existing methods mainly focus on single objects and masked backgrounds, but a new approach makes this method applicable to a variety of complex, in-the-wild images without the need to train new models.

There are a ton of sample outputs on the project summary page that are worth a browse if you find this sort of thing at all interesting. Some of the 360 degree reconstructions look rough, some are impressive, and some are a bit amusing. For example indoor shots tend to reconstruct rooms that look good, but lack doorways.

There is a research paper for those seeking additional details and a GitHub repository for the code, but the implementation requires some significant hardware.

This Week In Security: Find My Keylogger, Zephyr, And Active Exploitation

Keyloggers. Such a simple concept — you secretly record all the characters typed on a keyboard, and sort through it later for interesting data. That keyboard sniffer could be done in software, but a really sneaky approach is to implement the keylogger in hardware. Hardware keyloggers present a unique problem. How do you get the data back to whoever’s listening? One creative solution is to use Apple’s “Find My” tracking system. And if that link won’t let you read the story, a creative solution for that issue is to load the page with javascript disabled.

This is based on earlier work from [Fabian Bräunlein], dubbed “Send My”. As an aside, this is the worst naming paradigm, and Apple should feel bad for it. At the heart of this cleverness is the fact that Apple used the standard Bluetooth Low Energy (BLE) radio protocol, and any BLE device can act like an Apple AirTag. Bits can be encoded into the reported public key of the fake AirTag, and the receiving side can do a lookup for the possible keys.

A fake AirTag keylogger manages to transfer 26 characters per second over the “Find My” system, enough to keep up with even the fastest of typists, given that no keyboard is in use all the time. Apple has rolled out anti-tracking protections, and the rolling key used to transmit data also happens to completely defeat those protections. Continue reading “This Week In Security: Find My Keylogger, Zephyr, And Active Exploitation”

Cheap Power Supplies With Fake Chips Might Not Be That Bad

We all know the old maxim: if it’s too good to be true, it’s probably made with fake components. OK, maybe that’s not exactly how it goes, but in our world gone a little crazy, there’s good reason to be skeptical of pretty much everything you buy. And when you pay the equivalent of less than a buck for a DC-DC converter, you get what you pay for.

Or do you? It’s not so clear after watching [Denki Otaku]’s video on a bargain bag of buck converters he got from Amazon — ¥1,290 for a lot of ten, or $0.85 a piece. The thing that got [Denki]’s Spidey senses tingling is the chip around which these boards were built: the LM2596. These aren’t especially cheap chips; Mouser lists them for about $5.00 each in a reel of 500.

Initial testing showed the converters, which are rated at 3 to 42 VDC in and 1.25 to 35 VDC out, actually seem to do a decent job. At least with output voltage, which stays at the set point over a wide range of input voltages. The ripple voltage, though, is an astonishing 400 mV — almost 10% of the desired 5.0 V output. What’s more, the ripple frequency is 18 kHz, which is far below the 150 kHz oscillator that’s supposed to be in the LM2596. Other modules from the batch tested at 53 kHz ripple, so better, but still not good. There were more telltales of chip fakery, such as dodgy-looking lettering on the package, incorrect lead forming, and finger-scorching heat under the rated 3 A maximum load. Counterfeit? Almost definitely. Useless? Surprisingly, probably not. Depending on your application, these might do the job just fine, especially if you slap a bigger cap on the output to smooth that ripple and keep the draw low. And keep your fingers away, of course.

Worried that your chips are counterfeits? Here’s a field guide for fake chip spotters. And what do you do if you get something fake? A refund might just be possible.

Continue reading “Cheap Power Supplies With Fake Chips Might Not Be That Bad”

Rendering of 6-unit NuScale VOYGR SMR plant.

Utah NuScale Nuclear Plant Project Canceled Due To Lack Of Interest From Utilities

Intended to be the first 6-unit deployment of NuScale’s 77 MW VOYGR small modular reactors (SMRs), the Carbon Free Power Project (CFPP) in Utah was scheduled to begin construction by 2025 on the grounds of the Idaho National Laboratory (INL), yet it has now been canceled by NuScale (press release) after not finding enough utilities interested in purchasing power from the nuclear plant. This led NuScale and UAMPS (Utah Associated Municipal Power Systems) to back out of the CFPP project.

To be clear, it seems this decision neither reflects on SMRs as a whole, nor NuScale’s prospects. Currently NuScale still has a number of projects which it is involved in, including the use of its SMR technology with the Polish copper and silver producer KGHM Polska Miedź SA. Demand for SMRs is also being flooded with various designs by both established and start-up companies, with TerraPower’s Natrium reactor seeing additional demand, including at the Kemmerer site in Wyoming.

Meanwhile, the European Commission is establishing an SMR Industrial Alliance, and countries like Norway are looking to build their first nuclear plants using SMRs, which includes Danish Seaborg’s molten salt reactor. In the end it should be clear that whether a singular infrastructure project works out economically or not depends on many factors. This can also be seen with e.g. wind farm projects, where Danish Ørsted canceled two large US offshore wind projects, Swedish Vattenfall abandoned its new British offshore wind project due to rising costs and Siemens Energy is having to borrow billions of Euros to patch up financial holes in its Spanish wind turbine unit.

Continue reading “Utah NuScale Nuclear Plant Project Canceled Due To Lack Of Interest From Utilities”