We’re proud to announce the last round of speakers, as well as the two workshops that we’ll be running at 2025 Hackaday Europe in Berlin on March 15th and 16th — and Friday night the 14th, if you’re already in town.
The last two years that we’ve done Hackaday Europe in Berlin have been awesome, and this year promises to keep up the tradition. We can’t wait to get our hands on the crazy selection of SAO badge addons that are going to be in each and every schwag bag.
Tickets for the event itself are going fast, but the workshop tickets that go on sale at 8:00 AM PST sell out even faster. And you need the one to enjoy the other, so get your tickets now!
Holography is about capturing 3D data from a scene, and being able to reconstruct that scene — preferably in high fidelity. Holography is not a new idea, but engaging in it is not exactly a point-and-shoot affair. One needs coherent light for a start, and it generally only gets touchier from there. But now researchers describe a new kind of holographic camera that can capture a scene better and faster than ever. How much better? The camera goes from scene capture to reconstructed output in under 30 milliseconds, and does it using plain old incoherent light.
The camera and liquid lens is tiny. Together with the computation back end, they can make a holographic capture of a scene in under 30 milliseconds.
The new camera is a two-part affair: acquisition, and calculation. Acquisition consists of a camera with a custom electrically-driven liquid lens design that captures a focal stack of a scene within 15 ms. The back end is a deep learning neural network system (FS-Net) which accepts the camera data and computes a high-fidelity RGB hologram of the scene in about 13 ms. How good are the results? They beat other methods, and reconstruction of the scene using the data looks really, really good.
One might wonder what makes this different from, say, a 3D scene captured by a stereoscopic camera, or with an RGB depth camera (like the now-discontinued Intel RealSense). Those methods capture 2D imagery from a single perspective, combined with depth data to give an understanding of a scene’s physical layout.
Holography by contrast captures a scene’s wavefront information, which is to say it captures not just where light is coming from, but how it bends and interferes. This information can be used to optically reconstruct a scene in a way data from other sources cannot; for example allowing one to shift perspective and focus.
Being able to capture holographic data in such a way significantly lowers the bar for development and experimentation in holography — something that’s traditionally been tricky to pull off for the home gamer.
Making a multi-band amateur radio transceiver has always been a somewhat challenging project, and making one that also supported different modes would for many years have been of almost impossible complexity best reserved for expensive commercial projects. [Bob W7PUA] has tackled both in the form of a portable 10-band multi-mode unit, and we can honestly say he’s done a very good job indeed.
As you might expect in 2025 it’s a software defined radio (SDR), but to show how powerful the silicon available today is, it’s all implemented on a microcontroller. There’s a Teensy 4 with an audio codec board that does all the signal processing heavy lifting, and an RF board that takes care of the I/Q mixing and the analogue stuff.
Band switching is handled using a technique from the past; interchangeable plug-in coil and filter units, that do an effective job. The result is a modestly-powered but extremely portable rig that doesn’t look to have broken the bank, and since the write-up goes into detail on the software side we hope it might inform other SDR projects too. We might have gone for old-school embossed Dymo labels on that brushed aluminium case just for retro appeal, but we can’t fault it.
It’s not the first time we’ve looked at a small multi-band SDR here, but we think this one ups the game somewhat.