You Too Can Do The Franck-Hertz Experiment

We talk about quantum states — that is, something can be at one of several discrete values but not in between. For example, a binary digit can be a 1 or a 0, but not 0.3 or 0.5. Atoms have quantum states, but how do we know that? That’s what the Franck-Hertz experiment demonstrates, and [stoppi] shows you how to replicate that famous experiment yourself.

You might need to translate the web page if your German isn’t up to speed, but there’s also a video you can watch below. The basic idea is simple. A gas-filled tube sees a large voltage across the cathode and grid. A smaller voltage connects to the grid and anode. If you increase the grid voltage, you might expect the anode current to increase linearly. However, that doesn’t happen. Instead, you’ll observe dips in the anode current.

When electrons reach a certain energy they excite the gas in the tube. This robs them of the energy they need to overcome the grid/anode voltage, which explains the dips. As the energy increases, the current will again start to rise until it manages to excite the gas to the next quantum level, at which point another dip will occur.

Why not build a whole lab? Quantum stuff, at a certain level, is weird, but this experiment seems understandable enough.

Continue reading “You Too Can Do The Franck-Hertz Experiment”

Bar of conductive filament with leds and a battery

Putting Conductive TPU To The Test

Ever pried apart an LCD? If so, you’ve likely stumbled at the unassuming zebra strip — the pliable connector that makes bridging PCB pads to glass traces look effortless. [Chuck] recently set out to test if he could hack together his own zebra strip using conductive TPU and a 3D printer.

[Chuck] started by printing alternating bands of conductive and non-conductive TPU, aiming to mimic the compressible, striped conductor. Despite careful tuning and slow prints, the results were mixed to say the least. The conductive TPU measured a whopping 16 megaohms, barely touching the definition of conductivity! LEDs stayed dark, multimeters sulked, and frustration mounted. Not one to give up, [Chuck] took to his trusty Proto-pasta conductive PLA, and got bright, blinky success. It left no room for flexibility, though.

It would appear that conductive TPU still isn’t quite ready for prime time in fine-pitch interconnects. But if you find a better filament – or fancy prototyping your own zebra strip – jump in! We’d love to hear about your attempts in the comments.

Continue reading “Putting Conductive TPU To The Test”

My Scammer Girlfriend: Baiting A Romance Fraudster

Nobody likes spam messages, but some of them contain rather fascinating scams. Case in point, [Ben Tasker] recently got a few romance scam emails that made him decide to take a poke at the scam behind these messages. This particular scam tries to draw in marks with an attached photo (pilfered from Facebook) and fake personal details. Naturally, contacting scammers is a bad idea, and you should never provide them with any personal information if you decide to have some ‘fun’.

The games begin once you contact them via the listed email address, as they’re all sent from hacked/spoofed email accounts. After this you have to wait for the scammers to return to the campaign on their monthly cycle, so give it a few weeks. Analyzing image metadata provides some clues (e.g. the FBMD prefix in IPTC tags set by Meta, as well as timezone info). The IP address from the email headers pointed to a VPN being used, so no easy solution here.

After establishing contact, the scammers try to coax the mark into ‘helping’ them move to their country, with Skype out-call numbers received on [Ben]’s burner phone that seem designed to add to the realism. Then ‘disaster’ strikes and the mark is asked to transfer a lot of money to help their new ‘love’. Naturally, [Ben] wasn’t a gullible mark, and set up a few traps, including a custom domain and website that’d log any visitor (i.e. the scammer).

Continue reading “My Scammer Girlfriend: Baiting A Romance Fraudster”

Probably The Simplest Sequencing Synth

With inexpensive microntrollers capable of the most impressive feats of sound synthesis, it’s not so often we see projects that return to an earlier style of electronic music project. The 1-bit synth from [Electroagenda] takes us firmly into that territory, employing that most trusty of circuits, a 555.

It’s a time-honored circuit, a 555 provides a note clock that drives a 4017 that functions as a sequencer. This switches in a set of voltage dividers, which in turn control another 555 oscillator that produces the notes. It’s a fun toy straight from the 1970s, right down to the protoboard and hookup wire construction. There’s a demo video with some lovely beeps below, and we think most of you should have what it takes to make your own.

If you’re seeking more inspiration, may we introduce you to our Logic Noise series?

Continue reading “Probably The Simplest Sequencing Synth”