Repairing A Kodak Picture Maker Kiosk

Photo-printing kiosks are about as common as payphones these days. However, there was a time when they were everywhere. The idea was that if you didn’t have a good printer at home, you could take your digital files to a kiosk, pay your money, and run off some high-quality images. [Snappiness] snagged one, and if you’ve ever wondered what was inside of one, here’s your chance.

While later models used a Windows PC inside, this one is old enough to have a Sun computer. That also means that it had things like PCMCIA slots and a film scanner. Unfortunately, it wasn’t working because of a bad touch screen. The box was looking for a network on boot, which required some parameter changes. The onboard battery is dead, too, so you have to change the parameters on every boot. However, the real killer was the touchscreen, which the software insists on finding before it will start.

The monitor is an old device branded as a Kodak monitor and, of course, is unavailable. [Snappiness] found pictures of another kiosk online and noted that the monitor was from Elo, a common provider of point-of-sale screens. Could the “Kodak” monitor just be an Elo with a new badge? It turns out it probably was because a new Elo monitor did the trick.

Of course, what excited us was that if we found one of these in a scrap pile, it might have a Sun workstation inside. Of course, you can just boot Solaris on your virtual PC today. You might be surprised that Kodak invented the digital camera. But they failed to understand what it would mean to the future of photography.

Continue reading “Repairing A Kodak Picture Maker Kiosk”

Building A Fully Automatic Birkeland-Eyde Reactor

Ever wanted to produce nitrogen fertilizer like they did in the 1900s? In that case, you’re probably looking at the Birkeland-Eyde process, which was the first industrial-scale atmospheric nitrogen fixation process. It was eventually replaced by the Haber-Bosch and Ostwald processes. [Markus Bindhammer] covers the construction of a hobbyist-sized, fully automated reactor in this video.

It uses tungsten electrodes to produce the requisite arc, with a copper rod brazed onto both. The frame is made of aluminium profiles mounted on a polypropylene board, supporting the reaction vessel. Powering the whole contraption is a 24 VDC, 20 A power supply, which powers the flyback transformer for the high-voltage arc, as well as an air pump and smaller electronics, including the Arduino Uno board controlling the system.

The air is dried by silica gel before entering the reactor, with the airflow measured by a mass air flow sensor and the reaction temperature by a temperature sensor. This should give the MCU a full picture of the state of the reaction, with the airflow having to be sufficiently high relative to the arc to extract the maximum yield for this already very low-yield (single-digit %) process.

Usually, we are more interested in getting our nitrogen in liquid form. We’ve also looked at the Haber-Bosch method in the past.

Continue reading “Building A Fully Automatic Birkeland-Eyde Reactor”

Firefox logo displayed on screen

Add WebUSB Support To Firefox With A Special USB Device

RP2040-based Pico board acting as U2F dongle with Firefox. (Credit: ArcaneNibble, GitHub)
RP2040-based Pico board acting as U2F dongle with Firefox. (Credit: ArcaneNibble, GitHub)

The WebUSB standard is certainly controversial. Many consider it a security risk, and, to date,  only Chromium-based browsers support it. But there is a workaround that is, ironically, supposed to increase security. The adjacent Universal 2nd Factor (U2F) standard also adds (limited) USB support to browsers. Sure, this is meant solely to support U2F USB dongles for two-factor authentication purposes, but as [ArcaneNibble] demonstrates using U2F-compatible firmware on a Raspberry Pi RP2040, by hijacking the U2F payload, this API can be used to provide WebUSB-like functionality.

Continue reading “Add WebUSB Support To Firefox With A Special USB Device”

You Too Can Do The Franck-Hertz Experiment

We talk about quantum states — that is, something can be at one of several discrete values but not in between. For example, a binary digit can be a 1 or a 0, but not 0.3 or 0.5. Atoms have quantum states, but how do we know that? That’s what the Franck-Hertz experiment demonstrates, and [stoppi] shows you how to replicate that famous experiment yourself.

You might need to translate the web page if your German isn’t up to speed, but there’s also a video you can watch below. The basic idea is simple. A gas-filled tube sees a large voltage across the cathode and grid. A smaller voltage connects to the grid and anode. If you increase the grid voltage, you might expect the anode current to increase linearly. However, that doesn’t happen. Instead, you’ll observe dips in the anode current.

When electrons reach a certain energy they excite the gas in the tube. This robs them of the energy they need to overcome the grid/anode voltage, which explains the dips. As the energy increases, the current will again start to rise until it manages to excite the gas to the next quantum level, at which point another dip will occur.

Why not build a whole lab? Quantum stuff, at a certain level, is weird, but this experiment seems understandable enough.

Continue reading “You Too Can Do The Franck-Hertz Experiment”

Bar of conductive filament with leds and a battery

Putting Conductive TPU To The Test

Ever pried apart an LCD? If so, you’ve likely stumbled at the unassuming zebra strip — the pliable connector that makes bridging PCB pads to glass traces look effortless. [Chuck] recently set out to test if he could hack together his own zebra strip using conductive TPU and a 3D printer.

[Chuck] started by printing alternating bands of conductive and non-conductive TPU, aiming to mimic the compressible, striped conductor. Despite careful tuning and slow prints, the results were mixed to say the least. The conductive TPU measured a whopping 16 megaohms, barely touching the definition of conductivity! LEDs stayed dark, multimeters sulked, and frustration mounted. Not one to give up, [Chuck] took to his trusty Proto-pasta conductive PLA, and got bright, blinky success. It left no room for flexibility, though.

It would appear that conductive TPU still isn’t quite ready for prime time in fine-pitch interconnects. But if you find a better filament – or fancy prototyping your own zebra strip – jump in! We’d love to hear about your attempts in the comments.

Continue reading “Putting Conductive TPU To The Test”

My Scammer Girlfriend: Baiting A Romance Fraudster

Nobody likes spam messages, but some of them contain rather fascinating scams. Case in point, [Ben Tasker] recently got a few romance scam emails that made him decide to take a poke at the scam behind these messages. This particular scam tries to draw in marks with an attached photo (pilfered from Facebook) and fake personal details. Naturally, contacting scammers is a bad idea, and you should never provide them with any personal information if you decide to have some ‘fun’.

The games begin once you contact them via the listed email address, as they’re all sent from hacked/spoofed email accounts. After this you have to wait for the scammers to return to the campaign on their monthly cycle, so give it a few weeks. Analyzing image metadata provides some clues (e.g. the FBMD prefix in IPTC tags set by Meta, as well as timezone info). The IP address from the email headers pointed to a VPN being used, so no easy solution here.

After establishing contact, the scammers try to coax the mark into ‘helping’ them move to their country, with Skype out-call numbers received on [Ben]’s burner phone that seem designed to add to the realism. Then ‘disaster’ strikes and the mark is asked to transfer a lot of money to help their new ‘love’. Naturally, [Ben] wasn’t a gullible mark, and set up a few traps, including a custom domain and website that’d log any visitor (i.e. the scammer).

Continue reading “My Scammer Girlfriend: Baiting A Romance Fraudster”