Making Parts Feeders Work Where They Weren’t Supposed To

[Chris Cecil] had a problem. He had a Manncorp/Autotronik MC384V2 pick and place, and needed more feeders. The company was reluctant to support an older machine and wanted over $32,000 to supply [Chris] with more feeders. He contemplated the expenditure… but then came across another project which gave him pause. Could he make Siemens feeders work with his machine?

It’s one of those “standing on the shoulders of giants” stories, with [Chris] building on the work from [Bilsef] and the OpenPNP project. He came across SchultzController, which could be used to work with Siemens Siplace feeders for pick-and-place machines. They were never supposed to work with his Manncorp machine, but it seemed possible to knit them together in some kind of unholy production-focused marriage. [Chris] explains how he hooked up the Manncorp hardware to a Smoothieboard and then Bilsef’s controller boards to get everything working, along with all the nitty gritty details on the software hacks required to get everything playing nice.

For an investment of just $2,500, [Chris] has been able to massively expand the number of feeders on his machine. Now, he’s got his pick and place building more Smoothieboards faster than ever, with less manual work on his part.

We feature a lot of one-off projects and home production methods, but it’s nice to also get a look at methods of more serious production in bigger numbers, too. It’s a topic we follow with interest. Video after the break.

Continue reading “Making Parts Feeders Work Where They Weren’t Supposed To”

Building A DIY Tornado Tower

A tornado can be an awe-inspiring sight, but it can also flip your car, trash your house, and otherwise injure you with flying debris. If you’d like to look at swirling air currents in a safer context, you might appreciate this tornado tower build from [Gary Boyd].

[Gary]’s build was inspired by museum demonstrations and the tornado machine designs of [Harald Edens]. His build generates a vortex that spans 1 meter tall in a semi-open cylindrical chamber. A fan in the top of the device sucks in air from the chamber, and exhausts it through a vertical column of holes in the wall of the cylinder. This creates a vortex in the air, though it’s not something you can see on its own. To visualize the flow, the cylindrical chamber is also fitted with an ultrasonic mist generator in the base. The vortex in the chamber is able to pick up this mist, and it can be seen swirling upwards as it is sucked towards the fan at the top.

It’s a nice educational build, and one that’s as nice to look at as it is to study. It produces a thick white vortex that we’re sure someone could turn into an admirable lamp or clock or something, this being Hackaday, after all. In any case, vortexes are well worth your study. If you’re cooking up neat projects with this physical principle, you should absolutely let us know!

ESP32-Powered Clock Brings Aviation Style To Your Desk

There’s something cool about the visual design language used in the aviation world. You probably don’t get much exposure to it if you’re not regularly flying a plane, but there are other ways you can bring it into your life. A great example would be building an aviation-themed clock, like this stylish timepiece from [oliverb.]

The electronic heart of the build is an ESP32. This wireless-capable microcontroller is a popular choice for clock builds these days. This is because it can contact network time servers out of the box, which allows you to build an incredibly capable and accurate clock without any additional parts. No real-time-clock needed—just have the ESP32 buzz the Internet for an accurate update on the regular!

As for the display itself, three gauges show hours, minutes, and seconds on aviation-like gauges. They’re 3D-printed, which means you can build them from scratch. That’s a touch easier than having to go out and source actual surplus aviation hardware. Each gauge is driven by a NEMA17 stepper motor. There’s also an ATMEGA328 on hand to drive a 7-segment gauge on the seconds display, and a PIR sensor which shuts the clock down when nobody is around to view it.

It’s a tidy build, and one with a compelling aesthetic at that. We’ve seen some similar builds before using real aviation gauges, too. Video after the break.

Continue reading “ESP32-Powered Clock Brings Aviation Style To Your Desk”

Converting The C64 Mini Into A C64C

The C64 Mini is a beautiful and functional replica of the most popular computer ever made, except at 50% size and without a working keyboard. For maximum nostalgia, it was modeled after the brown breadbox C64 case which so characterized the model. However, [10p6] wanted to build a tiny C64C instead, so set about making a conversion happen.

The build is primarily about the case design. [10p6] created a nice 50% scale duplicate of the C64C, with an eye to making it work with the internals of the popular C64 Mini. The case was paired with a custom PETSCII keyboard PCB and keycaps designed by [Bleugh]. This was a key element, since it wouldn’t really feel like a functional C64C without a functional keyboard. The build also scored a bonus USB hub for more flexibility. For the best possible finish, the case, power button, and keycaps were all printed using a resin printer, which provides a more “production-like” result than FDM printers are capable of.

It’s funny how retro computers remain popular to this day, particularly amongst the hacker set. In contrast, we don’t see a whole lot of people trying to replicate Pentium II machines from the mid-1990s. If you do happen to have a crack at it, though, the tipsline is always open. Video after the break.

Continue reading “Converting The C64 Mini Into A C64C”

Supercon 2024: Quick High-Feature Boards With The Circuit Graver

These days, if you want to build something with modern chips and components, you probably want a custom PCB. It lets you build a neat and compact project that has a certain level of tidiness and robustness that you can’t get with a breadboard or protoboard. The only problem is that ordering PCBs takes time, and it’s easy to grow tired of shipping delays when you don’t live in the shadow of the Shenzhen board houses.

[Zach Fredin] doesn’t suffer this problem, himself. He’s whipping up high-feature PCBs at home with speed and efficiency that any maker would envy. At the 2024 Hackaday Supercon, he was kind enough to give a talk to explain the great engineering value provided by the Circuit Graver.

Continue reading “Supercon 2024: Quick High-Feature Boards With The Circuit Graver”

Keep Bears At Bay With The Crackle Of 280,000 Volts

Bears! Are they scared of massive arcs that rip through the air, making a lot of noise in the process? [Jay] from the Plasma Channel sure hopes so, because that’s how his bear deterrent works!

[Jay] calls it the Bear Blaster 5000. Right from the drop, this thing looks like some crazy weapon out of Halo. That’s because it throws huge arcs at 280,000 volts. The basic concept behind it is simple enough—a battery drives a circuit which generates (kinda) low voltage AC. This is fed to the two voltage multipliers which are set up with opposite polarity to create the greatest possible potential difference between the two electrodes they feed. The meaty combination is able to arc across electrodes spaced over four inches apart. It’s all wrapped up in a super-cool 3D printed housing that really shows off the voltage multiplier banks.

Continue reading “Keep Bears At Bay With The Crackle Of 280,000 Volts”

Supercon 2024: Rethinking Body Art With LEDs

Tattoos. Body paint. Henna. All these are popular kinds of body art with varying histories and cultural connotations, many going back centuries or even longer. They all have something in common, though—they all change how the body reflects light back to the viewer. What if, instead, body art could shine a light of its very own?

This is the precise topic which [Katherine Connell] came to discuss at the 2024 Hackaday Supercon. Her talk concerns rethinking body art with the use of light emitting diodes—and is both thoroughly modern and aesthetically compelling. Beyond that, it’s an engineering development story with liquid metal and cutting-edge batteries that you simply don’t want to miss!

Continue reading “Supercon 2024: Rethinking Body Art With LEDs”