Ordering Pizza On Your Sega Dreamcast Is Very Clunky Indeed

If you’re ordering pizza these days, you’re probably using a smartphone app or perhaps still making a regular old phone call. If you’re creative and a little bit tricky, though, you can order pizza right from your Sega Dreamcast. You just need to jump through a few hoops, as demonstrated by [Delux] and [The Dreamcast Junkyard] in the recent past.

You used to be able to order pizza on the Dreamcast natively, all the way back in 1999. However, the modern Domino’s website doesn’t really work on the ancient Dreamcast browser anymore. The simple fact is that web technology has advanced a long way in the last couple of decades, and Sega didn’t exactly spend a lot of time maintaining a browser on a console that died mere months after its rivals hit the market.

Thus, to place a pizza order on the Dreamcast these days, you need to work within its limitations. [Delux] uses the Dreamcast with the Broadband Adapter to access a PC on the local network via the XDP web browser. That PC is hosting Web Rendering Proxy, a tool which converts complicated modern websites into something a simpler machine can parse. From there, it’s a matter of connecting to the Domino’s website, and slowly clicking through the online ordering pages. Between the proxy delay, the Dreamcast’s glacial processing speed, and the clunky Domino’s ordering interface, it takes ages. Never before has adding coupons felt like such a hassle. Still, after 15 minutes of fuss, the order is completed… and a short time later, a hot fresh pizza arrives.

It’s a fun hack, but really it’s the PC running the proxy that’s doing the heavy lifting. In 2026, it’s far more elegant to order a pizza from your Nintendo Wii.

Continue reading “Ordering Pizza On Your Sega Dreamcast Is Very Clunky Indeed”

Whipping Up A Quick Adapter To Hack The Xbox 360

[Androxilogin] had a problem. An Xbox 360 Slim had shown up in the post, but failed to give much more than a beep when turned on. Disassembly revealed some missing components, but replacing them failed to breathe life into the beleaguered console. Deeper repair was needed, and that would require a special adapter which [Androxilogin] was able to whip up from scratch.

When it comes to the Corona models of the Xbox 360, it’s often necessary to use something called a “post-fix adapter” to do certain diagnostic and repair tasks. These adapters consist of a bracket which wraps around the CPU, and probes the solder ball for the POST_OUT signal which is otherwise difficult to access on the motherboard itself. Adapters are readily available online, and are usually manufactured as a PCB with a protruding contact to make a connection.

For [Androxilogin], though, time was short. Rather than wait for adapters to ship, it was quicker to whip up a custom piece to do the same job. This was achieved with a 3D print which was able to clamp around the CPU, while snugly holding a piece of tinned 30 AWG wire to poke the critical point beneath the chip. After a couple of attempts to get the sizing just right, [Androxilogin] was able to make the necessary connection which enabled installing Xell Loader on to the machine to bring it back to life.

If you’re eager to make your own post-fix adapter, files are available on Printables, with more details over on Reddit to boot. While the Xbox 360 is starting to suffer some awkward symptoms of age. we nevertheless still see a steady stream of hacks come in for this vintage machine. If you’re tackling your own retro console mods, be sure to notify the tipsline.

Building Natural Seawalls To Fight Off The Rising Tide

These days, the conversation around climate change so often focuses on matters of soaring temperatures and extreme weather events. While they no longer dominate the discourse, rising sea levels will nonetheless still be a major issue to face as global average temperatures continue to rise.

This poses unique challenges in coastal areas. Municipalities must figure out how to defend their shorelines, or decide which areas they’re willing to lose. The City of Palo Alto is facing just this challenge, and is building a natural kind of seawall to keep the rising tides at bay.

Continue reading “Building Natural Seawalls To Fight Off The Rising Tide”

Companion MIDI Pedal Helps Roland Groovebox Along

The Roland SP-404 Mk2 is a popular groovebox that can deliver a great beat if you know how to use it. If you’re seeking greater control than is available out of the box, though, you might like to try a custom pedal built by [Romain Dereu].

The concept is simple enough—[Romain] whipped up a bespoke MIDI device to specifically control various features of the SP-404. It’s based on an Arduino Nano, though it could also be built with an Arduino Uno if so desired. The microcontroller sends the requisite MIDI messages out via its serial UART. The microcontroller is built into a pedal-style enclosure with a big toggle switch and a foot switch. This enables the triggering of various pads on the SP-404, with modes selected via the toggle.

It’s a simple build that opens up new possibilities when playing with the SP-404. If you’ve ever wanted a custom device to spit out some specific MIDI commands to control the synths or drum machines in your performance rig, this project is a great example of how easy this is to achieve. Meanwhile, if you’re whipping your own custom MIDI gear at home, we always love to see it land on our tipsline!

Solar Supercapacitor Lamp Probably Won’t Get You Saved At Sea

Most solar lights are cheap garbage that exist just to put more microplastics into the environment as they degrade in short order. [Jeremy Cook] built his own solar light, however, and this one might just last a little longer.

Most solar lights rely on the cheapest nickel-cadmium or nickel-metal hydride cells that are available on the market. They don’t tend to have a lot of capacity and they wear out incredibly fast. [Jeremy] went a different route for his build, though, instead relying on a rather tasty supercapacitor to store energy. Unlike a rechargeable battery, that may only last a few thousand cycles, these supercaps are expected to perform over 500,000 charge/discharge cycles without failure. With such longevity, [Jeremy] suggests his build could last a full 1369.8 years, assuming it charged and discharged once a day. Whether the plastic transistor, LEDs, or diode could hold up over such a long period is another question entirely.

Electronically, the build is relatively simple. The solar panel collects light energy and turns it into electricity, charging the supercaps through a diode. The supercaps are only able to discharge through a transistor, which only turns on when the voltage output by the solar panel drops at night time, and the voltage on the base becomes lower than that on the emitter. When current flows through the transistor, it then lights the LED in turn and the device glows in the darkness. As a nice touch, the whole circuit is installed in a glass jug of syrup originally sourced from Costco. Files are on Github for those eager to explore further.

Given the light-in-a-bottle construction, [Jeremy] also playfully imagined that a lamp like this could theoretically be used as a safety device. If lost at sea, you could charge it using the sun and try and use it to signal for help. However, upon casually exploring the concept, he notes that a small solar-powered light will only raise the chance of a far-off ocean rescue from “extremely unlikely” to “still very unlikely.”

You can do all kinds of neat things with free energy from the sun, from mowing your lawn to processing waste products. Video after the break.

Continue reading “Solar Supercapacitor Lamp Probably Won’t Get You Saved At Sea”

An E-Ink Macropad For Improved Productivity

Why press many button when few button do trick? That was the thinking of [Bike Cook Robots] when it came time to revamp his desk. To that end, he whipped up a tidy macropad to make daily computing tasks easier.

The build is based around an Adafruit RP2040 Feather ThinkInk devboard, chosen because it plugs straight into a readily-available 4.2 inch e-ink. The display is tasked with showing icons that correspond to the macro assignments for the 3 x 4 array of mechanical keyboard switches. Everything is wrapped up in a 3D printed frame, with an bracket to mount it to the monitor arms on the desk. The macropad is set up to talk to a custom Python app that runs on the host machine, which handles triggering actions and can also talk back to the pad itself.

The combination of e-ink display and button pad is a great way to display the function of each key without excess complexity. We’ve seen some other great builds in this space before, too.

Continue reading “An E-Ink Macropad For Improved Productivity”

Building A Light That Reacts To Radio Waves

When it comes to electromagnetic waves, humans can really only directly perceive a very small part of the overall spectrum, which we call “visible light.” [rootkid] recently built an art piece that has perception far outside this range, turning invisible waves into a visible light sculpture.

The core of the device is the HackRF One. It’s a software defined radio (SDR) which can tune signals over a wide range, from 10 MHz all the way up to 6 GHz. [rootkid] decided to use the HackRF to listen in on transmissions on the 2.4 GHz and 5 GHz bands. This frequency range was chosen as this is where a lot of devices in the home tend to communicate—whether over WiFi, Bluetooth, or various other short-range radio standards.

The SDR is hooked up to a Raspberry Pi Zero, which is responsible for parsing the radio data and using it to drive the light show. As for the lights themselves, they consist of 64 filament LEDs bent into U-shapes over a custom machined metal backing plate. They’re controlled over I2C with custom driver PCBs designed by [rootkid]. The result is something that looks like a prop from some high-budget Hollywood sci-fi. It looks even better when the radio waves are popping and the lights are in action.

It’s easy to forget about the rich soup of radio waves that we swim through every day.

Continue reading “Building A Light That Reacts To Radio Waves”