Commodore 64 Web Server Brings 8-Bit Into The Future

These days, most webservers are big hefty rackmount rigs with roaring fans in giant datacenters. [naDDan]’s webserver is altogether more humble, as it runs on a single Commodore 64. 

The C64 is running Contiki OS, an operating system for 6502-based computers. It’s built with an eye to networking, requiring ethernet hardware for full functionality. In [naDDan]’s case, he’s outfitted his C64 with an ETFE network adapter in the cartridge port to get it online. It serves up the HTML file off a 1541C floppy drive, with the drive buzzing away every time someone loads up the page.

The page itself is simple, showing some basic information on a simple blue background. There is some scrolling text though, as is befitting the 8-bit era. It’s also available in four languages.

[naDDan’s] server can be found here, according to his video, but at the time of writing, it was down for the count. Whether that’s due to a dynamic DNS issue or the simple fact that an 8-bit 6502 isn’t up to heavy traffic is up for debate. Regardless, try for yourself and see how you go. Video after the break.

Flexible Actuator Flaps For 100,000,000 Cycles Without Failure

Flexible PCBs are super-useful things, but they can have a limited fatigue life. [Carl Bugeja] has been using them to create flexible actuators, though, and he’s getting an amazing 100,000,000 cycles out of them after some rigorous development.

[Carl] explores all manner of optimizations to his flippy actuators in the video. He tried making them oscillate faster by putting a hole in the middle to reduce drag. Other tricks include getting the arm thickness just right, and experimenting with rigidity through adding or removing sections of soldermask.

Fundamentally, though, he learned the key to longevity laid in the copper traces on the flex PCBs themselves. After enough flexural cycles, the traces would fail, killing the actuator. He experimented with a variety of solutions, eventually devleoping a ruggedized two-arm version of his actuator. Twenty samples were put to the test, oscillating at 25 Hz for two weeks straight. All samples survived the test, in which they were put through around 107,820,000 cycles.

[Carl] has put in plenty of hard work on this project, and his actuators have come a long way since we saw them last. He hopes to use the better actuators to improve his FlexLED display. Video after the break.

Continue reading “Flexible Actuator Flaps For 100,000,000 Cycles Without Failure”

Old Clock Transformed Into Mesmerizing Light Display

It’s easy to find a cheap clock at any dollar store that will manage to tell the time, but chances are that the plastic-fantastic construction won’t do you any aesthetic favors. Fear not, though, for [ROBO HUB]’s upcycled design turns a humble clock into a mesmerizing horological display of beauty.

The build starts by scavenging the movement out of a cheap plastic clock. A CD is then glued to the front of the movement to serve as a reflective backing plate. For numerals, the clock uses F3, F6, F9, and F12 keys nabbed from a keyboard.

The real party trick, though, is in the lighting. This build is elevated beyond hackneyed 90s desk clocks by the inclusion of a ring of LED strip lighting. When switched on, the LED light reflects and refracts on the surface of the CD, creating a mesmerizing shifting pattern featuring all the colors of the rainbow.

CDs are actually quite magical from an optical perspective and have all kinds of nifty uses.

Continue reading “Old Clock Transformed Into Mesmerizing Light Display”

TinyTendo Is A Miniscule Yet Real NES

These days, it’s possible to get a single-board computer the size of a stick of gum. This will give you the power to emulate thousands of games and you can run one off batteries inside a handheld of your own devising. [Redherring32] took an altogether more creative and old-school approach with the TinyTendo, however. This is one pocket-sized NES that actually runs on genuine hardware. (Nitter)

The feat was achieved by drastically reducing the size of the original NES hardware to make it fit into a Game Boy style form factor. Key to this work was creating a custom cut-sized motherboard which uses original Nintendo DIP chips that have been machined down to become more like QFN-style surface mount packages. With that done, the chips can be assembled onto the TinyTendo PCB which is even smaller than a contemporary Raspberry Pi 3. It’s all assembled in a custom case, with USB C for charging and a bright and colorful LCD screen.

The TinyTendo is designed to use mini-cartridges created by [Bucket Mouse], a hacker who’s no stranger to impressive custom Game Boy hardware. By virtue of running genuine NES hardware, there’s also the possibility that the TinyTendo could play full-sized NES carts with a simple adapter.

This project has been a long time in the making; we first looked at [Redherring32]’s efforts back in 2021. It begs the question why the original NES was so big when Nintendo clearly had plenty of space to spare in those hefty DIP packages! It’s amazing what can be done with some creativity and perseverance. Continue reading “TinyTendo Is A Miniscule Yet Real NES”

Neural Network Helps With Radar Pipeline Diagnostics

Diagnosing pipeline problems is important in industry to avoid costly or dangerous failures from cracked, broken, or damaged pipes. [Kutluhan Aktar] has built an system that uses AI to assist in this difficult task.

The core of the system is a MR60BHA1 60 GHz mmWave radar module, which is most typically used for breathing and heartrate detection. Here, it’s repurposed to detect fluctuating vibrations as a sign that a pipeline may be cracked or damaged. It’s paired with an Arduino Nicla Vision module, with the smart camera able to run a neural network model on the captured radar data to flag potential pipe defects and photograph them. The various modules are assembled on a PCB resembling Dragonite, the Dragon/Flying-type Pokemon.

[Kutluhan] walks us through the whole development process, including the creation of a web interface for the system. Of particular interest is the way the neural network was trained on real defect models that [Kutluhan] built using PVC pipe. We’ve looked at industrial pipelines in detail before, too. Video after the break.

Continue reading “Neural Network Helps With Radar Pipeline Diagnostics”

Can Hobbyists Bring SGI’s IRIX OS Back To Life?

Irix was the operating system developed by Silicon Graphics from 1988 to 1998. The OS supported the company’s high-end workstations and served in many serious roles. The company cut off support for the UNIX-based OS in 2006, but now a diehard community is looking to bring the ancient codebase back to life.

SGI workstations used to cost big money before the company collapsed. It failed to make the leap to a new era when x86 architecture began to dominate the wider computing industry. Credit: Bruno Cordioli, CC-BY-2.0

While SGI’s workstations once sold for five or six figures, surviving examples can now often be had for just a few hundred dollars on eBay. The MIPS-based hardware was potent for its time, often used for 3D rendering work for video games, films, or for scientific purposes. IRIX was SGI’s own OS built specifically to support these use cases.

The IRIX Network is a hobbyist community that loves these old machines and their software. The group hopes to raise $6,500 through crowdfunding to reverse-engineer IRIX. The hope is to use those learnings to create an open-source derivative version named IRIX-32, based on IRIX 5.3, the last 32-bit version of the OS.

It’s a monumental task, but admirable nonetheless. Whether we one day see IRIX reborn, akin to what happened to AmigaOS, remains to be seen.

Moon Phase Lamp Uses Rotating Shade

The Moon has fascinated humanity for centuries. These days, though, it’s a trial and a bore to go outside and stare upwards to check on the natural satellite. Instead, why not bring the Moon to your bedside with this rotating phase lamp?

The build comes to us from [payasa_manandhar], who did a good job of replicating the Moon in both form and function. It’s based around a lithophane of the lunar surface, which adequately duplicates the Moon’s grey pockmarked visage thanks to topographical data sourced from NASA. It looks a treat when backlit from the inside. However, this is no mere ornamental lamp. With the aid of a stepper motor controlled by an Arduino, a shade inside the lamp actually rotates to shadow the Moon as per the appropriate phase.

It’s a build that is both fun and educational, in both the electronic and astronomical disciplines. We’ve seen some other great Moon lamps before, too.