PVDF: The Specialized Filament For Chemical And Moisture Resistance

There’s a dizzying number of specialist 3D printing materials out there, some of which do try to offer an alternative to PLA, PA6, ABS, etc., while others are happy to stay in their own niche. Polyvinylidene fluoride (PVDF) is one of these materials, with the [My Tech Fun] YouTube channel recently getting sent a spool of PVDF for testing, which retails for a cool $188.

Some of the build plate carnage observed after printing with PVDF. (Credit: My Tech Fun, YouTube)
Some of the build plate carnage observed after printing with PVDF. (Credit: My Tech Fun, YouTube)

Reading the specifications and datasheet for the filament over at the manufacturer’s website it’s pretty clear what the selling points are for this material are. For the chemists in the audience the addition of fluoride is probably a dead giveaway, as fluoride bonds in a material tend to be very stable. Hence PVDF ((C2H2F2)n) sees use in applications where strong resistance to aggressive chemicals as well as hydrolysis are a requirement, not to mention no hygroscopic inclinations, somewhat like PTFE and kin.

In the video’s mechanical testing it was therefore unsurprising that other than abrasion resistance it’s overall worse and more brittle than PA6 (nylon). It was also found that printing this material with two different FDM printers with the required bed temperature of 110°C was somewhat rough, with some warping and a wrecked engineering build plate in the Bambu Lab printer due to what appears to be an interaction with the usual glue stick material. Once you get the print settings dialed in it’s not too complicated, but it’s definitely not a filament for casual use.

Continue reading “PVDF: The Specialized Filament For Chemical And Moisture Resistance”

JuiceBox Rescue: Freeing Tethered EV Chargers From Corporate Overlords

The JuiceBox charger in its natural environment. (Credit: Nathan Matias)
The JuiceBox charger in its natural environment. (Credit: Nathan Matias)

Having a charger installed at home for your electric car is very convenient, not only for the obvious home charging, but also for having scheduling and other features built-in. Sadly, like with so many devices today, these tend to be tethered to a remote service managed by the manufacturer. In the case of the JuiceBox charger that [Nathan Matias] and many of his neighbors bought into years ago, back then it and the associated JuiceNet service was still part of a quirky startup. After the startup got snapped up by a large company, things got so bad that [Nathan] and others saw themselves required to find a way to untether their EV chargers.

The drama began back in October of last year, when the North American branch of the parent company – Enel X Way – announced that it’d shutdown operations. After backlash, the online functionality was kept alive while a buyer was sought.  That’s when [Nathan] and other JuiceBox owners got an email informing them that the online service would be shutdown, severely crippling their EV chargers.

Ultimately both a software and hardware solution was developed, the former being the JuicePass Proxy project which keeps the original hardware and associated app working. The other solution is a complete brain transplant, created by the folk over at OpenEVSE, which enables interoperability with e.g. Home Assistant through standard protocols like MQTT.

Stories like these make one wonder how much of this online functionality is actually required, and how much of it just a way for manufacturers to get consumers to install a terminal in their homes for online subscription services.

Google Will Require Developer Verification Even For Sideloading

Do you like writing software for Android, perhaps even sideload the occasional APK onto your Android device? In that case some big changes are heading your way, with Google announcing that they will soon require developer verification for all applications installed on certified Android devices – meaning basically every mainstream device. Those of us who have distributed Android apps via the Google app store will have noticed this change already, with developer verification in the form of sending in a scan of your government ID now mandatory, along with providing your contact information.

What this latest change thus effectively seems to imply is that workarounds like sideloading or using alternative app stores, like F-Droid, will no longer suffice to escape these verification demands. According to the Google blog post, these changes will be trialed starting in October of 2025, with developer verification becoming ‘available’ to all developers in March of 2026, followed by Google-blessed Android devices in Brazil, Indonesia, Thailand and Singapore becoming the first to require this verification starting in September of 2026.

Google expects that this system will be rolled out globally starting in 2027, meaning that every Google-blessed Android device will maintain a whitelist of ‘verified developers’, not unlike the locked-down Apple mobile ecosystem. Although Google’s claim is that this is for ‘security’, it does not prevent the regular practice of scammers buying up existing – verified – developer accounts, nor does it harden Android against unscrupulous apps. More likely is that this will wipe out Android as an actual alternative to Apple’s mobile OS offerings, especially for the hobbyist and open source developer.

One of the photo-detector spheres of ARCA (Credit: KM3NeT)

Confirmation Of Record 220 PeV Cosmic Neutrino Hit On Earth

Neutrinos are exceedingly common in the Universe, with billions of them zipping around us throughout the day from a variety of sources. Due to their extremely low mass and no electric charge they barely ever interact with other particles, making these so-called ‘ghost particles’ very hard to detect. That said, when they do interact the result is rather spectacular as they impart significant kinetic energy. The resulting flash of energy is used by neutrino detectors, with most neutrinos generally pegging out at around 10 petaelectronvolt (PeV), except for a 2023 event.

This neutrino event which occurred on February 13th back in 2023 was detected by the KM3NeT/ARCA detector and has now been classified as an ultra-high energy neutrino event at 220 PeV, suggesting that it was likely a cosmogenic neutrinos. When we originally reported on this KM3-230213A event, the data was still being analyzed based on a detected muon from the neutrino interaction even, with the researchers also having to exclude the possibility of it being a sensor glitch.

By comparing the KM3-230213A event data with data from other events at other detectors, it was possible to deduce that the most likely explanation was one of these ultra-high energy neutrinos. Since these are relatively rare compared to neutrinos that originate within or near Earth’s solar system, it’ll likely take a while for more of these detection events. As the KM3NeT/ARCA detector grid is still being expanded, we may see many more of them in Earth’s oceans. After all, if a neutrino hits a particle but there’s no sensor around to detect it, we’d never know it happened.


Top image: One of the photo-detector spheres of ARCA (Credit: KM3NeT)

Very Efficient APFC Circuit In Faulty Industrial 960 Watt Power Supply

The best part about post-mortem teardowns of electronics is when you discover some unusual design features, whether or not these are related to the original fault. In the case of a recent [DiodeGoneWild] video involving the teardown of an industrial DIN-rail mounted 24 V, 960 Watt power supply, the source of the reported bang was easy enough to spot. During the subsequent teardown of this very nicely modular PSU the automatic power factor correction (APFC) board showed it to have an unusual design, which got captured in a schematic and is explained in the video.

Choosing such a APFC design seems to have been done in the name of efficiency, bypassing two of the internal diodes in the bridge rectifier with the external MOSFETs and ultrafast diodes. In short, it prevents some of the typical diode voltage drops by removing diodes in the path of the current.

Although not a new design, as succinctly pointed out in the comments by [marcogeri], it’s explained how even cutting out one diode worth of voltage drop in a PSU like this can save 10 Watt of losses. Since DIN rail PSUs rarely feature fans for active cooling, this kind of APFC design is highly relevant and helps to prevent passively cooled PSUs from spiraling into even more of a thermal nightmare.

As for the cause behind the sooty skid marks on one of the PCBs, that will be covered in the next video.

Continue reading “Very Efficient APFC Circuit In Faulty Industrial 960 Watt Power Supply”

Dealing With The 1970s EPROM Chaos In 2025

It could be argued that erasable programmable ROMs (EPROMs) with their quaint UV-transparent windows are firmly obsolete today in an era of various flavors of EEPROMs. Yet many of these EPROMs are still around, and people want to program them. Unfortunately, the earliest EPROMs were made during a time when JEDEC standardization hadn’t taken root yet, leading to unique pinouts, programming voltages, and programming sequences, as [Anders Nielsen] explains in a recent video.

[Anders]’s Relatively Universal-ROM-Programmer project recently gained the ability to program even the oldest types of EPROMs, something which required modifying the hardware design to accommodate EPROMs like Ti’s TMS2716 and the similar-but-completely-different TMS2516. Although not the hardest thing to support – requiring just a diode and resistor added to the BOM along with a firmware update – it’s just one of those pre-standardization traps.

As [Anders] put it, it’s sometimes good to be unencumbered by the burden of future knowledge. Who would have willingly subjected themselves to the chaos of incompatible pinouts, voltages, etc., if they had known beforehand that in a few years EEPROMs and JEDEC standardization would make life so much easier? Maybe that’s why messing with retro hardware like this is fun, as afterwards you can go back to the future.

Continue reading “Dealing With The 1970s EPROM Chaos In 2025”

How Intel’s 386 Protects Itself From ESD, Latch-up And Metastability

To connect the miniature world of integrated circuits like a CPU with the outside world, a number of physical connections have to be made. Although this may seem straightforward, these I/O pads form a major risk to the chip’s functioning and integrity, in the form of electrostatic discharge (ESD), a type of short-circuit called a latch-up and metastability through factors like noise. Shielding the delicate ASIC from the cruel outside world is the task of the I/O circuitry, with [Ken Shirriff] recently taking an in-depth look at this circuity in Intel’s 386 CPU.

The 386 die, zooming in on some of the bond pad circuits. (Credit: Ken Shirriff)
The 386 die, zooming in on some of the bond pad circuits. (Credit: Ken Shirriff)

The 386 has a total of 141 of these I/O pads, each connected to a pin on the packaging with a delicate golden bond wire. ESD is on the top of the list of potential risks, as a surge of high voltage can literally blow a hole in the circuitry. The protective circuit for this can be seen in the above die shot, with its clamping diodes, current-limiting resistor and a third diode.

Latch-up is the second major issue, caused by the inadvertent creation of parasitic structures underneath the P- and NMOS transistors. These parasitic transistors are normally inactive, but if activated they can cause latch-up which best case causes a momentary failure, but worst case melts a part of the chip due to high currents.

To prevent I/O pads from triggering latch-up, the 386 implements ‘guard rings’ that should block unwanted current flow. Finally there is metastability, which as the name suggests isn’t necessarily harmful, but can seriously mess with the operation of the chip which expects clean binary signals. On the 386 two flip-flops per I/O pad are used to mostly resolve this.

Although the 386’s 1985-era circuitry was very chonky by today’s standards, it was still no match for these external influences, making it clear just how important these protective measures are for today’s ASICs with much smaller feature sizes.