New Tullomer Filament Claims To Beat PEEK

Recently a company called Z-Polymers introduced its new Tullomer FDM filament that comes with a lofty bullet list of purported properties that should give materials like steel, aluminium, and various polymers a run for their money. Even better is that it is compatible with far lower specification FDM printers than e.g. PEEK. Intrigued, the folks over at All3DP figured that they should get some hands-on information on this filament and what’s it like to print with in one of the officially sanctioned Bambu Lab printers: these being the X1C & X1CE with manufacturer-provided profiles.

The world of engineering-grade FDM filaments has existed for decades, with for example PEEK (polyether ether ketone) having been around since the early 1980s, but these require much higher temperatures for the extruder (360+℃) and chamber (~90℃) than Tullomer, which is much closer (300℃, 50℃) to a typical high-performance filament like ABS, while also omitting the typical post-process annealing of PEEK. This assumes that Tullomer can match those claimed specifications, of course.

One of the current users of Tullomer is Erdos Miller, an engineering firm with a focus on the gas and oil industry. They’re using it for printing parts (calibration tooling) that used to be printed in filaments like carbon fiber-reinforced nylon (CF-PA) or PEEK, but they’re now looking at using Tullomer for replacing CF-PA and machined PEEK parts elsewhere too.

It’s still early days for this new polymer, of course, and we don’t have a lot of information beyond the rather sparse datasheet, but if you already have a capable printer, a single 1 kg spool of Tullomer is a mere $500, which is often much less or about the same as PEEK spools, without the requirement for a rather beefy industrial-strength FDM printer.

The £25,000 Tom Evans Pre-Amp Repair And A Copyright Strike

We were recently notified by a reader that [Tom Evans] had filed a copyright claim against [Mark]’s repair video on his Mend it Mark YouTube channel, taking down said repair video as well as [Mark]’s delightful commentary. In a new video, [Mark] comments on this takedown and the implications. The biggest question is what exactly was copyrighted in the original video, which was tough because YouTube refused to pass on [Mark]’s questions or provide further details.

In this new video the entire repair is summarized once again using props instead of the actual pre-amp, which you can still catch a glimpse of in our earlier coverage of the repair. To summarize, there was one bad tantalum capacitor that caused issues for one channel, and the insides of this twenty-five thousand quid pre-amp looks like an artistic interpretation of a Jenga tower using PCBs. We hope that this new video does stay safe from further copyright strikes from an oddly vengeful manufacturer after said manufacturer event sent the defective unit to [Mark] for a repair challenge.

Since this purportedly ‘audiophile-level’ pre-amplifier uses no special circuits or filtering – just carefully matched opamps – this is one of those copyright strike cases that leave you scratching your head.

Continue reading “The £25,000 Tom Evans Pre-Amp Repair And A Copyright Strike”

FlatMac: Building The 1980’s Apple IPad Concept

The Apple FlatMac was one of those 1980s concepts by designer [Hartmut Esslingers] that remained just a concept with no more than some physical prototypes created. That is, until [Kevin Noki] came across it in an Apple design book and contacted [Hartmut] to ask whether he would be okay with providing detailed measurements so that he could create his own.

Inside the 3D printed enclosure is a Raspberry Pi 4 running an appropriately emulated Macintosh, with a few modern features on the I/O side, including HDMI and USB. Ironically, the screen is from a 3rd generation iPad, which [Kevin] bought broken on EBay. There’s also an internal floppy drive that’s had its eject mechanism cleverly motorized, along with a modified USB battery bank that should keep the whole show running for about an hour. The enclosure itself is carefully glued, painted and sculpted to make it look as close to the original design as possible, which includes custom keycaps for the mechanical switches.

As far as DIY projects go, this one is definitely not for the faint of heart, but it’s fascinating to contrast this kind of project that’s possible for any determined hobbyist with the effort it would have taken forty years ago. The only question that’s left is whether or not the FlatMac would have actually been a practical system if it had made it to production. Although the keyboard seems decent, the ergonomics feel somewhat questionable compared to something more laptop-like.

Continue reading “FlatMac: Building The 1980’s Apple IPad Concept”

Ampere WS-1: The Other APL Portable Computer

When thinking of home computers and their portable kin it’s easy to assume that all of them provided BASIC as their interpreter, but for a while APL also played a role. The most quaint APL portable system here might be the Ampere WS-1, called the BIG.APL. Released in Japan in November of 1985, it was a very modern Motorola M68000-based portable with fascinating styling and many expansion options. Yet amidst an onslaught of BASIC-based microcomputers and IBM’s slow retreat out of the APL-based luggables market with its IBM 5110, an APL-only portable in 1985 was a daring choice.

Rather than offering both APL and BASIC as IBM’s offerings had, the WS-1 offered only APL, with a custom operating system (called Big.DOS) which also provided a limited a form of multi-tasking involving a back- and foreground task. Running off rechargeable NiCd batteries it could power the system for eight hours, including the 25 x 80 character LCD screen and the built-in microcassette storage.

Although never released in the US, it was sold in Japan, Australia and the UK, as can be seen from the advertisements on the above linked Computer Ads from the Past article. Clearly the WS-1 never made that much of a splash, but its manufacturer seems to be still around today, which implies that it wasn’t a total bust. You also got to admit that the design is very unique, which is one of the reasons why this system has become a collector’s item today.

Holograms: The Art Of Recording Wavefronts

The difference between holography and photography can be summarized perhaps most succinctly as the difference between recording the effect photons have on a surface, versus recording the wavefront which is responsible for allowing photographs to be created in the first place. Since the whole idea of ‘visible light’ pertains to a small fragment of the electromagnetic (EM) spectrum, and thus what we are perceiving with our eyes is simply the result of this EM radiation interacting with objects in the scene and interfering with each other, it logically follows that if we can freeze this EM pattern (i.e. the wavefront) in time, we can then repeat this particular pattern ad infinitum.

Close-up of the wavefront pattern recorded on the holographic film (Credit: 3Blue1Brown, YouTube)
Close-up of the wavefront pattern recorded on the holographic film (Credit: 3Blue1Brown, YouTube)

In a recent video by [3Blue1Brown], this process of recording the wavefront with holography is examined in detail, accompanied by the usual delightful visualizations that accompany the videos on [3Blue1Brown]’s channel. The type of hologram that is created in the video is the simplest type, called a transmission hologram, as it requires a laser light to illuminate the holographic film from behind to recreate the scene. This contrasts with a white light reflection hologram, which can be observed with regular daylight illumination from the front, and which is the type that people are probably most familiar with.

The main challenge is, perhaps unsurprisingly, how to record the wavefront. This is where the laser used with recording comes into play, as it forms the reference wave with which the waves originating from the scene interact, which allows for the holographic film to record the latter. The full recording setup also has to compensate for polarization issues, and the exposure time is measured in minutes, so it is very sensitive to any changes. This is very much like early photography, where monochromatic film took minutes to expose. The physics here are significant more complex, of course, which the video tries to gently guide the viewer through.

Also demonstrated in the video is how each part of the exposed holographic film contains enough of the wavefront that cutting out a section of it still shows the entire scene, which when you think of how wavefronts work is quite intuitive. Although we’re still not quite in the ‘portable color holocamera’ phase of holography today, it’s quite possible that holography and hologram-based displays will become the standard in the future.

Continue reading “Holograms: The Art Of Recording Wavefronts”

Exploring The Sounds And Sights Of Alien Worlds

The 20th century saw humankind’s first careful steps outside of the biosphere in which our species has evolved. Whereas before humans had experienced the bitter cold of high altitudes, the crushing pressures in Earth’s oceans, as well as the various soundscapes and vistas offered in Earth’s biosphere, beyond Earth’s atmosphere we encountered something completely new. Departing Earth’s gravitational embrace, the first humans who ventured into space could see the glowing biosphere superimposed against the seemingly black void of space, in which stars, planets and more would only appear when blending out the intense light from the Earth and its life-giving Sun.

Years later, the first humans to set foot on the Moon experienced again something unlike anything anyone has experienced since. Walking around on the lunar regolith in almost complete vacuum and with very low gravity compared to Earth, it was both strangely familiar and hauntingly alien. Although humans haven’t set foot on Mars yet, we have done the next best thing, with a range of robotic explorers with cameras and microphones to record the experience for us here back on Earth.

Unlike the Moon, Mars has a thin but very real atmosphere which permits the travel of soundwaves, so what does the planet sound like? Despite what fictional stories like Weir’s The Martian like to claim, reality is in fact stranger than fiction, with for example a 2024 research article by Martin Gillier et al. as published in JGR Planets finding highly variable acoustics during Mars’ seasons. How much of what we consider to be ‘normal’ is just Earth’s normal?

Continue reading “Exploring The Sounds And Sights Of Alien Worlds”

The Many Reasons For Putting Microphones In Rainforests

If a tree falls in a forest with nobody around, does it make a noise? In the case of the rainforests equipped with the Rainforest Connection’s Guardian system someone most assuredly will.

Rainforest Connection’s Guardian system up close, with microphone visible. (Credit: RFCx)

Originally created by the people behind the US nonprofit Rainforest Connection (RFCx) using upcycled smartphones to detect the sounds of illegal logging, their project now has grown into something much larger, keeping not only tabs on sounds of illegal activity, but also performing bioacoustic monitoring for scientific purposes.

Currently active in ten countries, the so-called Guardian Platform no longer features smartphones, but custom hardware inside an IP66 weatherproof enclosure and a whole range of communication options, ranging from cellular bands to satellite communications. The petal-shaped solar panels provide the module with up to 30 watts of power, and double as a shield to help protect it from the elements.

Not only is the real-time microphone data incredibly useful for rangers trying to stop illegal logging, it also provides researchers access to countless hours of audio data, which will require detailed, automated analysis. Even better is that if the audio data is available to the general public as well, via their Android & iOS apps (bottom of page), just in case you wanted to hear what that sneaky wildlife in the jungle of Peru is up to right now.