Senoko natural gas and oil-fired power station, Singapore in 2007. (Credit: Terence Ong)

Singapore’s 4300 Km Undersea Transmission Line With Australia Clears Regulatory Hurdle

The proposed AAPowerLink transmission line between Darwin (Australia) and Singapore. (Credit: Sun Cable)
The proposed AAPowerLink transmission line between Darwin (Australia) and Singapore. (Credit: Sun Cable)

Recently Singapore’s Energy Market Authority (EMA)  granted Sun Cable conditional approval for its transmission line with Australia. Singapore has been faced for years now with the dilemma that its population’s energy needs keep increasing year-over-year, while it has very little space to build out its energy-producing infrastructure, least of all renewables with their massive footprints. This has left Singapore virtually completely dependent on natural gas-burning thermal plants. Continue reading “Singapore’s 4300 Km Undersea Transmission Line With Australia Clears Regulatory Hurdle”

Feeling A Pong Of Nostalgia: Does It Hold Up In 2024?

We have probably all been there: that sudden memory of playing a (video) game and the good memories associated with said memory. Yet how advisable is it to try and re-experience those nostalgic moments? That’s what [Matt] of the Techmoan YouTube channel decided to give a whirl when he ordered the Arcade1Up Pong 2 Player Countercade game system. This comes loaded with multiple variants of the Pong game, including Pong Doubles and Pong Sports, in addition to Warlords, Super Breakout and Tempest. This unit as the name suggests allows for head-to-head two-player gaming.

This kind of ‘countercade’ system is of course much smaller than arcade versions, but you would expect it to give the Pong clones which [Matt] played as a youngster a run for their money at least. Ultimately [Matt] – after some multiplayer games with the Ms. – concluded that this particular nostalgia itch was one that didn’t have to be scratched any more. While the small screen of this countercade system and clumsy interface didn’t help much, maybe Pong just isn’t the kind of game that has a place in 2024?

From our own point of view of having played Pong (and many other ‘old’ games) on a variety of old consoles at retro events & museums, it can still be a blast to play even just Pong against a random stranger at these places. Maybe the issue here is that nostalgia is more about the circumstances of the memory and less of the particular game or product in question. Much like playing Mario Kart 64 on that 20″ CRT TV with three buddies versus an online match in a modern Mario Kart. It’s just not the same vibe.

Continue reading “Feeling A Pong Of Nostalgia: Does It Hold Up In 2024?”

Figuring Out The Most Efficient Way To Reuse Bags Of Desiccant

Everyone knows those small bags of forbidden “Do not eat” candy that come with fresh rolls of FDM filament as well as a wide range of other products. Containing usually silica gel but sometimes also bentonite clay, these desiccant bags are often either thrown away or tossed into bags of FDM filament with a ‘adding one can’t hurt’ attitude. As [Stefan] over at CNC Kitchen recently figured out, adding an already saturated bag of desiccant into e.g. an airtight container with a freshly dried spool of filament can actually make the humidity in the container spike as the desiccant will start releasing moisture. So it’s best to dry those little bags if you intend to reuse them, but what is the best way?

Among the ‘safe’ contenders are an oven, a filament dryer and the ‘filament drying’ option of [Stefan]’s Bambu Lab FDM printer. These managed to remove most of the moisture from the desiccant in a few hours. The more exciting option is that of a microwave, which does the same in a matter of minutes, requiring one or more ~5 minute sessions at low power, which effectively also used less power than the other options. Among the disadvantages are potentially melting bags, silica beads cracking, the bentonite clay desiccant heating up rather dangerously and the indicator dye in silica beads may be damaged by the rapid heating.

After all of this testing, it would seem that there are many good options to reuse those desiccant bags with a bit of care, although for those who happen to have a vacuum chamber nearby, that might be an even faster option.

Continue reading “Figuring Out The Most Efficient Way To Reuse Bags Of Desiccant”

Double-Slit Time Diffraction At Optical Frequencies

The double-slit experiment, first performed by [Thomas Young] in 1801 provided the first definitive proof of the dual wave-particle nature of photons. A similar experiment can be performed that shows diffraction at optical frequencies by changing the reflectivity of a film of indium-tin-oxide (ITO), as demonstrated in an April 2024 paper (preprint) by [Romain Tirole] et al. as published in Nature Physics. The reflectivity of a 40 nm thick film of ITO deposited on a glass surface is altered with 225 femtosecond pulses from a 230.2 THz (1300 nm) laser, creating temporal ‘slits’.

Interferogram of the time diffracted light as a function of slit separation (ps) and frequency (THz). (Credit: Tirole et al., Nature Physics, 2024)
Interferogram of the time diffracted light as a function of slit separation (ps) and frequency (THz). (Credit: Tirole et al., Nature Physics, 2024)

The diffraction in this case occurs in the temporal domain, creating frequencies in the frequency spectrum when a separate laser applies a brief probing pulse. The effect of this can be seen most clearly in an interferogram (see excerpt at the right). Perhaps the most interesting finding during the experiment was how quickly and easily the ITO layer’s reflectivity could be altered. With ITO being a very commonly used composition material that provides properties such as electrical conductivity and optical transparency which are incredibly useful for windows, displays and touch panels.

Although practical applications for temporal diffraction in the optical or other domains aren’t immediately obvious, much like [Young]’s original experiment the implications are likely to be felt (much) later.

Featured image: the conventional and temporal double-slit experiments, with experimental setup (G). (Credit: Tirole et al., Nature Physics, 2024)

What Would It Take To Recreate Bell Labs?

It’s been said that the best way to stifle creativity by researchers is to demand that they produce immediately marketable technologies and products. This is also effectively the story of Bell Labs, originally founded as Bell Telephone Laboratories, Inc. in January 1925. As an integral part of AT&T and Western Electric, it enjoyed immense funding and owing to the stable financial situation of AT&T very little pressure to produce results. This led to the development of a wide range of technologies like the transistor, laser, photovoltaic cell, charge-coupled cell (CCD), Unix operating system and so on. After the break-up of AT&T, however, funding dried up and with it the discoveries that had once made Bell Labs such a famous entity. Which raises the question of what it would take to create a new Bell Labs?

As described in the article by [Brian Potter], one aspect of Bell Labs that made it so successful was that the researchers employed there could easily spend a few years tinkering on something that tickled their fancy, whether in the field of semiconductors, optics, metallurgy or something else entirely. There was some pressure to keep research focused on topics that might benefit the larger company, but that was about it, as the leadership knew that sometimes new technologies can take a few years or decades to come to fruition.

Continue reading “What Would It Take To Recreate Bell Labs?”

Assessing Developer Productivity When Using AI Coding Assistants

We have all seen the advertisements and glossy flyers for coding assistants like GitHub Copilot, which promised to use ‘AI’ to make you write code and complete programming tasks faster than ever, yet how much of that has worked out since Copilot’s introduction in 2021? According to a recent report by code analysis firm Uplevel there are no significant benefits, while GitHub Copilot also introduced 41% more bugs. Commentary from development teams suggests that while the coding assistant makes for faster writing of code, debugging or maintaining the code is often not realistic.

None of this should be a surprise, of course, as this mirrors what we already found when covering this topic back in 2021. With GitHub Copilot and kin being effectively Large Language Models (LLMs) that are trained on codebases, they are best considered to be massive autocomplete systems targeting code. Much like with autocomplete on e.g. a smartphone, the experience is often jarring and full of errors. Perhaps the most fair assessment of GitHub Copilot is that it can be helpful when writing repetitive, braindead code that requires very little understanding of the code to get right, while it’s bound to helpfully carry in a bundle of sticks and a dead rodent like an overly enthusiastic dog when all you wanted was for it to grab that spanner.

Until Copilot and kin develop actual intelligence, it would seem that software developer jobs are still perfectly safe from being taken over by our robotic overlords.

Mapping A Fruit Fly’s Brain With Crowdsourced Research

Example of a graph representation of one identified network with connections coded by neurotransmitter types. (Credit: Amy Sterling, Murthy and Seung Labs, Princeton University)
Example of a graph representation of one identified network with connections coded by neurotransmitter types. (Credit: Amy Sterling, Murthy and Seung Labs, Princeton University)

Compared to the human brain, a fruit fly (Drosophila melanogaster) brain is positively miniscule, not only in sheer volume, but also with a mere 140,000 or so neurons and 50 million synapses. Despite this relative simplicity, figuring out how the brain of such a tiny fly works is still an ongoing process. Recently a big leap forward was made thanks to crowdsourced research, resulting in the FlyWire connectome map. Starting with high-resolution electron microscope data, the connections between the individual neurons (the connectome) was painstakingly pieced together, also using computer algorithms, but with validation by a large group of human volunteers using a game-like platform called EyeWire to perform said validation.

This work also includes identifying cell types, with over 8,000 different cell types identified. Within the full connectome subcircuits were identified, as part of an effort to create an ‘effectome’, i.e. a functional model of the physical circuits. With the finished adult female fruit fly connectome in hand, groups of researchers can now use it to make predictions and put these circuits alongside experimental contexts to connect activity in specific parts of the connectome to specific behavior of these flies.

Perhaps most interesting is how creating a game-like environment made the tedious work of reverse-engineering the brain wiring into something that the average person could help with, drastically cutting back the time required to create this connectome. Perhaps that crowdsourced research can also help with the ongoing process to map the human brain, even if that ups the scale of the dataset by many factors. Until we learn more, at this point even comprehending a fruit fly’s brain may conceivably give us many hints which could speed up understanding the human brain.

Featured image: “Drosophila Melanogaster Proboscis” by [Sanjay Acharya]