Raspberry Pi 2 Game Boy Brings Sexy Back From 1989

When the ever-versatile Raspberry Pi was released, the potential for cheap video game emulation was immediately obvious. Some of the very first Raspi projects to hit the internet were arcade cabinets, and it wasn’t long until people were making them portable. A purpose-build Linux distort called RetroPie has become very popular specifically because of the Raspi’s game-emulation potential. However, the actual hardware for these emulation systems isn’t always the most aesthetically (or ergonomically) pleasing. That’s where reddit user [Cristov9000] has managed to stand out from the crowd.

[Cristov9000] accomplished this by combining high-quality design (and 3D printing) with the careful use of original Nintendo parts. Game Boy and SNES buttons and elastomers were used to achieve the correct button feel. Other original Game Boy parts, like the volume wheel and power switch, ensure that the system feels as much like 1989 OEM hardware as possible.

Also impressive is the internal hardware, including 3 custom PCBs used to tie everything together to work via the Raspberry Pi 2 GPIO pins. The display is a 3.5″ TFT screen, and with the 6000 mAh it can handle gameplay for more than 7 hours. Other details, like the integrated mono speaker and rear shoulder buttons complete the experience. Combined with the RetroPie and an assortment of emulators, this is one of the most impressive portable gaming builds we’ve seen, especially among a crowded list of awesome raspi-based Game Boy builds.

Concrete With A Drinking Problem Could Reduce Flooding

Concrete – it’s all around you. You probably walk on it, drive on it, and maybe even sit on it! From a civil engineering standpoint, concrete really is a miracle material. But, it does have its downsides, especially in heavily developed urban areas. One of the most glaring of those downsides is the tendency for water to pool and flood on concrete. However, a new concrete formula could dramatically improve that by allowing water to drain quickly through the concrete itself.

While all unsealed concrete technically absorbs water, it does so very inefficiently and quickly becomes saturated. Once that happens, water will pool on the surface. This causes obvious problems for cars, as they become susceptible to hydroplaning. It also creates the potential for flooding in heavily paved areas.

This new concrete formula, called Topmix Permeable, is designed to reduce pooling by letting the water flow through at the rate of 600 liters per minute per square meter! It does this by using larger gravel pieces in the mix, which leaves bigger gaps for the water to drain down into. From there, it can be absorbed by the underlying soil, or routed safely away from roadways and parking lots.

Of course, this formula isn’t perfect. Its ability to pass through water also makes it likely to crack and quickly deteriorate in cold climates, as the water freezing and thawing inside the concrete will easily damage it. But, in warmer climates that receive a lot of rainfall in bursts, it could significantly improve safety.

Continue reading “Concrete With A Drinking Problem Could Reduce Flooding”

The DMCA May Have Allowed Volkswagen To Hide ECU Software From The EPA

A lot of questions have been raised by the recent “dieselgate” scandal. Should automakers be held accountable for ethically questionable actions? Are emissions standards in the United States too restrictive? Are we ever going to stop appending “gate” onto every mildly controversial news story? But, for Hackaday readers, the biggest question is most likely “how did they get away with it?” The answer is probably because of a law a lot of hackers are already familiar with: the DMCA.

If you haven’t seen the news about Volkswagen’s emissions cheating scheme, we’ll get you caught up quickly. In the United States, EPA emissions testing is done in a very specific and predictable way. Using clever ECU software tricks, Volkswagen was able to essentially “detune” the engines of their diesel vehicles when they were being tested by the EPA. This earned them passing marks, while allowing them to provide a less-restrictive ECU profile for the normal driving that buyers would actually experience.

How could they get away with this simple trick when a brief look at the ECU software would have revealed it? Because, they were able to hide under the umbrella of the DMCA. The ECU software is, of course, not intended to be user-accessible, which means that Volkswagen is allowed to lock it down. That, in turn, means that the EPA isn’t allowed to circumvent that security without violating the DMCA and potentially breaking the law. This kept the EPA’s hands tied, and Volkswagen protected. They were only found out because independent testing (that didn’t follow EPA procedure) revealed vastly different emissions levels.

Is your blood boiling yet? Add this to the stack of reasons why the EFF is trying to end the DRM parts of the DMCA.

[via /.]

Spinning A Pyrite Record For Art

Anyone with a record player is familiar with the concept of translating irregularities on a surface into sound. And, anyone who has ever cracked open a CD player or DVD player has seen how a laser can be used to reproduce sound digitally. Combining the two would be an interesting project in its own right, but [Dimitry Morozov] took this a couple of steps further with his pyrite disc sound object project.

DSC016533_1340_cPyrite discs, also known as pyrite suns or pyrite dollars, are a form of pyrite in which the crystallization structure forms a disc with radial striations. Pyrite discs are unique to the area around Sparta, Illinois, and are generally found in coal mines there. They have no real practical use, but are a favorite of mineral collectors because of their interesting aesthetics.

[Dmitry] received his pyrite disc from one such mineral collector in Boulder, CO, with the request that he use it for an interesting project. [Dmitry] himself specializes in art installations and unique instruments, and combined those passions in his pyrite disc sound object called Ra.

The concept itself is straightforward: spin the pyrite disc and use a laser to convert the surface striations into audio. But, as you can see in the photos and video, the execution was far from straightforward. From what we can gather, [Dimitry] used an Arduino Nano and a DIY laser pickup on a servo arm to scan the pyrite disc as it’s being spun by a stepper motor. That data is then sent to a Raspberry Pi where it’s synthesized (with various modulation and effects controls), to produce sound that is output through the single speaker attached to the object. Generating sound from unusual sources is certainly nothing new to regular readers, but the beauty of this part project is definitely something to be applauded.

Continue reading “Spinning A Pyrite Record For Art”