Your Masterclass In Product Design: Hackaday Prize Mentor Sessions

New to this year’s Hackaday Prize is a set of live mentor sessions and you’re invited! Being at the center of a successful product design project means having an intuitive sense in many, many areas; from industrial design and product packaging, to manufacturing and marketing. This is your chance to learn from those experts who have already been there and want to make your experience better and easier.

We want you to get involved by entering your own project into the Hackaday Prize; now is the time to tell us you’re ready to demo your project with a mentor. Hackaday Prize Mentor Sessions are happening every two weeks throughout the summer. In these video chats we’re inviting some promising Hackaday Prize entries to start off with a “demo day” type of presentation, followed by an interactive session with the mentor hosting each event.

It’s also important that this incredible resource be available to all, so these videos will be published once the mentor session wraps up. This is a master class format where the advice and shared experience have a beneficial effect far beyond the groups sharing their projects.

The 2019 Hackaday Prize focuses on product development. Show your path from an idea to a product design ready for manufacturing and you’ll be on target to share in more than $200,000 in cash prizes!

Meet Some of Our Mentors:

Below you will find just a taste of the mentor sessions in the works. These are the first three mentor session videos that will be published, but make sure you browse the full set of incredible mentors and get excited for what is to come!

Bunnie Huang

Co-founder, Chibitronics


Bunnie is best known for his work hacking the Microsoft Xbox, as well as
his efforts in designing and manufacturing open source hardware. His past projects include the chumby (app-playing alarm clock), Chibitronics (peel-and-stick electronics for crafting), and the Novena (DIY laptop). He currently lives in Singapore where he runs a private product design studio, Kosagi, and actively mentors several startups and students of the MIT Media Lab.

Mattias Gunneras & Andrew Zolty

Co-founders, BREAKFAST NY


Zolty and Mattias founded BREAKFAST in 2009. This studio of multidisciplinary artists and engineers conceives, designs, and fabricates high-tech contemporary art installations and sculptures. BREAKFAST has over 15 large-scale pieces that can be found in various museums, arenas, and lobby spaces throughout the world.

Giovanni Salinas

Product Development Engineer, DesignLab


Giovanni is the Product Development Engineer at Supplyframe DesignLab. He has designed and developed hundreds of products, including consumer electronics, kitchenware, and urban furniture for the North American, European, Chinese and Latin American markets. Through his experience he has honed his expertise in rapid prototyping and DFM in plastics, wood, and metals.

We Want You To Demo Your Product!

Mentor sessions will continue throughout the summer with these and other mentors! Sign up to demo your 2019 Hackaday Prize entry!

Hackaday Podcast 018: Faxploitation! Ikea RFID Hacking, Space Ads, Hydrogen Dones, And Blinkies

Hackaday Editors Elliot Williams and Mike Szczys gather round the microphone to spin tales from a week of hacks. All the rage are fax-machine-based malware, a hydrogen fuel cell drone, and bringing color to the monochrome world of the original Super Mario Land. There are at least three really cool LED hacks this week, plus Tom’s been exploring space advertising, Maya’s debunking solder myths, and Elliot goes ga-ga for a deep Ikea electronics hack. Closing out the show is an interview with Bart Dring about his exquisitely-engineered string art robot.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 018: Faxploitation! Ikea RFID Hacking, Space Ads, Hydrogen Dones, And Blinkies”

6th Annual Hackaday X Tindie MFBA Meetup With A New, Larger Venue

We want to hang out with you at Maker Faire Bay Area! Put our after-hours meetup on your schedule with a Sharpie, because the 6th Annual Hackaday x Tindie MFBA Meetup w/ Kickstarter will be bigger and better than ever with a new venue that has plenty of room for everyone!

The hacker crowd descends upon San Mateo weekend after next to show off a year of creations at Maker Faire. On Saturday, May 18th, the Faire will close for the evening as our meetup heats up. Bring along some hardware to show off and get the conversation started. Whether you’re attending the Faire or staffing a booth all day, this is the perfect way to unwind.

New Place with More Space!

Every year we’ve been packed to the gills and it’s time to make room for more people. This year Hackaday and Tindie have teamed up with Kickstarter to rent out the entire B Street Station in San Mateo. It’s close by and has plenty of room to hang out with friends new and old. We’ll provide light food and the first drink is on us! Please RSVP so we know how many people to expect, and like we said, grab a project to bring along! This event is open to all who are 21 years of age or older.

Begin Your Weekend with HDDG on Thursday

Start the weekend off right with the HDDG meetup on Thursday night. In keeping with tradition, this special Maker Faire edition of the Hardware Developer’s Didactic Galactic is happen at the San Francisco Supplyframe office on May 16th. You’ll find a ton of people from out of town on hand to enjoy talks ranging from non-rectangular phone design and mitigating ESD in wearables, to getting your projects funded with PR stunts. Speakers include Christina Cyr, Mary West, and Mic Black.

Newsletter from the Editors

Stay caught up on the finest Hackaday articles and get info about event announcements like this one. Every week the Hackaday Editors put together a newsletter delivered directly to your inbox.

Hackaday Podcast 017: Are Cheap Microcontrollers Worth It? Android On Your Bike. Plus Food Printers And Coffee Bots

Join Editors Mike Szczys and Elliot Williams as they recount a week of fascinating hacks. We take a good look at the PMS150C, a microcontroller that literally costs pennies but can only be flashed once. SNES emulators have a new trick up their sleeves to make low-def a lot less low, and you retro enthusiasts will either hate or love the NES zapper chandelier. Elliot’s enamored by a bike computer running Android core, and both Mike and Elliot delve into the food hacking scene, be it meat, chocolate, coffee, or of course frosting!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 017: Are Cheap Microcontrollers Worth It? Android On Your Bike. Plus Food Printers And Coffee Bots”

KiCad Community Shines At First Ever KiCon

Last weekend was KiCon, a gathering of hardware developers from all over the world who use KiCad open source EDA software. This included many of the software engineers who drive development, people who use KiCad in their business, and those who simply love it for being a professional quality tool available for anyone to use.

From hardware show-and-tell, to the lineup of talks, and the social events each evening, there was so much packed into two (plus) days. Join me after the break for a whirlwind tour of the people and the hardware found at 2019 KiCon.

Continue reading “KiCad Community Shines At First Ever KiCon”

Ask Hackaday: Is USB Robust Enough?

Earlier this month a single person pleaded guilty to taking down some computer labs at a college in New York. This was not done by hacking into them remotely, but by plugging a USB Killer in one machine at a time. This malicious act caused around $58,000 in damage to 66 machines, using a device designed to overload the data pins on the USB ports with high-voltage. Similar damage could have been done with a ball-peen hammer (albeit much less discreetly), and we’re not here to debate the merits of the USB Killer devices. If you destroy property you don’t own you should be held accountable.

But the event did bring an interesting question to mind. How robust are USB ports? The USB Killer — which we’ve covered off and on through the years —  is billed as a “surge testing” device and operates by injecting -200 volts DC on the data lines of the USB connection. Many USB ports are not protected against this and the result is permanent damage to the computer hardware. Is protection for these levels of abuse necessary or would it needlessly add cost to our machines?

A chip like the TPD4S014 has ESD protection on the data lines that is rated up to +/- 1500 volts, clamping to ground to dissipate the energy. It’s a solution that should protect against repeated spikes on the data lines, as well as short circuits on the power lines and over/undervoltage situations.

ADUM4160 Functional Diagram

The ADuM4160 is an interesting step up from this. It’s designed to provide isolation between a USB host and the device connected to it. Rather than relying on clamping, this chip implements isolation through air core transformers. Certainly this would be overkill to install in every product, but for those of use building and testing USB devices this would save you from “Oops, wrong USB cable” moments at the work bench.

Speaking of accidents at the bench, there is certainly a demand for USB isolation outside of what’s built into our computers. Earlier this year we saw a fantastic take on a properly-designed USB power strip. Among the goals were current limiting, undervoltage protection, and a proper power disconnect switch for each port. The very need to design your own reminds us that consumer manufacturers are often lazy in their USB design. “Use a USB hub” is bad advice for protection at the workbench since quality of design varies so wildly.

We would be interested in hearing from anyone who has insight on standards applying to equipment continuing to survive over current or over voltage events and remain functional. There are standards like UL-60950 that should apply to USB. But that standard includes language about failing safe for the operator, not necessarily remaining functional:

After abnormal operation or a single fault (see 1.4.14), the equipment shall remain safe for an OPERATOR in the meaning of this standard, but it is not required that the equipment should still be in full working order. It is permitted to use fusible links, THERMAL CUT-OUTS, overcurrent  protection devices and the like to provide adequate protection.

So, we’re here to ask you, the readers of Hackaday. Are our USB devices robust enough? Do you have a go-to USB protection chip, part, or other circuit you like to use? Have you ever accidentally killed a USB host device (if so, how)? Do you have special equipment that you depend on when developing projects involving USB? Let us know what you think in the comments below.

Hackaday Podcast 016: 3D Printing With Steel, Molding With Expanded Foam, QUIP-Package Parts, And Aged Solder

Join Editors Elliot Williams and Mike Szczys to recap the week in hardware hacking. This episode looks at microfluidics using Shrinky Dinks, expanding foam to build airplane wings, the insidious effect of time on component solder points, and Airsoft BBs used in 3D printing. Finishing out the episode we have an interview with two brothers who started up a successful business in the Shenzhen electronics markets.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 016: 3D Printing With Steel, Molding With Expanded Foam, QUIP-Package Parts, And Aged Solder”