Embed With Elliot: Debounce Your Noisy Buttons, Part II

If you’ve ever turned a rotary encoder or pushed a cursor button and had it skip a step or two, you’ve suffered directly from button bounce. My old car stereo and my current in-car GPS navigator both have this problem, and it drives me nuts. One button press should be one button press. How hard is that to get right?

In the last session of Embed with Elliot, we looked into exactly how hard it is to get right and concluded that it wasn’t actually all that bad, as long as you’re willing to throw some circuitry at the problem, or accept some sluggishness in software. But engineers cut corners on hardware designs, and parts age and get dirty. Making something as “simple” as a button work with ultra-fast microcontrollers ends up being non-trivial.

And unsurprisingly, for a problem this ubiquitous, there are a myriad of solutions. Some are good, some are bad, and others just have trade-offs. In this installment, we’re going to look at something special: a debouncer that uses minimal resources and is reasonably straightforward in its operation, yet which can debounce along with the best of ’em.

In short, I’ll introduce you to what I think is The Ultimate Debouncer(tm)! And if you don’t agree by the end of this article, I’ll give you your money back.

Continue reading “Embed With Elliot: Debounce Your Noisy Buttons, Part II”

Embed With Elliot: Debounce Your Noisy Buttons, Part I

“Psst…hey buddy! Wanna see the sweetest little debouncing routine this side of Spokane? C’mon over here. Step right over those bit-shift operators, they don’t bite. Now look at this beauty right here: I call her The Ultimate Debouncer(tm)!”

Everybody who works with microcontrollers eventually runs into the issue of switch bounce or “chatter”, and nearly everyone has their own favorite solution. Some fix it in hardware, others fix it in software. Some hackers understand chatter, and others just cut-and-paste the classic routines. Some folks even try to ignore it, and they might even get lucky, but everyone’s luck runs out sometimes.

In the next two “Embed with Elliot” installments, I’ll look a little bit at bouncing, look into doing hardware debouncing both the simple way and the right way, and build up a basic software routine that demonstrates some of the principles and which works just fine, though it’s not optimized. We’ll be laying the groundwork.

In the next installment, I’ll let you in on my personal favorite debounce routine. It’s a minor tweak on a standard, but with some special sauce that’s worth spreading around. I’ll call it the Ultimate Debouncer(tm), but will it stand up to the scrutiny of the Hackaday commenteers? (How’s that for a cliffhanger?!?)

For now, though, let’s look into switch bounce and the standard ways to fix it in hardware and software.

Continue reading “Embed With Elliot: Debounce Your Noisy Buttons, Part I”

Debounce Code – One Post To Rule Them All

Last month we asked you to send in your debounce code. You didn’t disappoint and it’s time to share the code received. There were some guideline for sending in code so if you don’t see yours here, it probably didn’t follow the rules, sorry. We also tried to weed out code that using delay loops for debounce. These tend to be a poor way to handle inputs because they monopolize the processor.

We wanted to add upvote/downvote buttons to each set of code to give some idea of a group consensus on code quality but there’s no good system available for multiple up/down vote widgets on one wordpress page. This results in a huge code dump for any one person to go through. If you’ve got any ideas on how to better organize this let us know: debounce@hackaday.com.

We make no guarantees that this code is safe to use, or that it even works. Test it carefully before using for important tasks.

Join us after the break for a whirlwind of code examples.

Continue reading “Debounce Code – One Post To Rule Them All”

Open Call: Send Us Your Debounce Code

If you’ve ever designed an embedded system with at least one button you’ve had to deal with button debouncing. This is also know as contact bounce, a phenomenon where a button press can be registered as multiple button presses if not handled correctly. One way to take care of this is with a hardware filter built from a resistor-capacitor setup, or by using a couple of NAND gates. We find that [Jack Ganssle] put together the most comprehensive and approachable look at contact bounce which you should read through if you want to learn more.

We’re interested in software solutions for debouncing buttons. This seems to be one of the most common forum questions but it can be hard to find answers in the form of reliable code examples. Do you have debounce code that you depend on in every application? Are you willing to share it with the world? We’d like to gather as many examples as possible and publish them in one-post-to-rule-them-all.

Send your debounce code to: debounce@hackaday.com

Here’s some guidelines to follow:

  • Please only include debounce code. Get rid of other unrelated functions/etc.
  • You should send C code. If you want to also send an assembly code version that’s fine, but it must be supplementary to the C code.
  • Please comment your code. This will help others understand and use it. You may be tempted to explain the code in your email but this info is best placed in the code comments
  • Cite your sources. If you adapted this code from someone else’s please include a note about that in the code comments.

As an example we’ve included one of our favorite sets of debounce code after the break. Please note how it follows the guidelines listed above.

Continue reading “Open Call: Send Us Your Debounce Code”

Button Debouncing With Smart Interrupts

Debouncing button or switch inputs on microcontrollers can be a challenging problem for those first starting to program these devices. Part of the reason for this difficulty is that real-world buttons don’t behave like the idealized textbook components we first learn about, and therefore need special consideration to operate like one would expect. There are simple ways to debounce inputs like adding a delay after a button is pressed, but for more efficient use of computer resources as well as adding some other capabilities to inputs you might want to look at this interrupt service routine (ISR) method from [Lee] aka [stockvu].

The strategy with this debounce method is not simply to use a single ISR for the button input, but to activate a second timer-based ISR at that time that runs at a certain interval which timestamps any button press and checks the amount of time the button has been active. If it’s under a certain threshold the ISR assumes it’s caused by bounce and blocks the bounce. If the timestamp ages past another longer threshold it knows the button has been released. This method allows on-the-fly adaptation between long button presses and rapid button presses and is capable of debouncing both types.

For those wanting to try this out, [stockyu] has included some example Arduino code for others to use. It’s an interesting take on a solution for a common problem, and puts very little load on the microcontroller. There are about as many ways to debounce inputs as there are microcontroller platforms, though, and you can even use a 555 timer to get this job done which frees up 100% of the microcontroller’s CPU.

Using The 555 For Everything

The 555 timer is one of the most versatile integrated circuits available. It can generate PWM signals, tones, and single-shot pulses. You can even put one in a bi-stable mode similar to a flip flop. All of these modes are available by only changing a few components outside of the IC itself. It’s also dirt cheap, so it finds its way into all kinds of applications its original inventors never imagined. There’s a bit of a trope around here as well that you ought not to use a microcontroller when one of these will do, and while it’s a bit of a played-out comment, it’s often more true than it seems. This video shows a few uncommon ways of using these circuits instead of putting a microcontroller to work.

After a brief overview of the internals of the hallowed 555, [Doctor Volt] walks us through some of its uses, starting with applications for digital inputs, including a debounce circuit and a toggle switch. From there, he moves on to demonstrating a circuit that can protect batteries from deep discharge, and a small change to that circuit can turn the 555 into a resetting fuse that can protect against short circuit events. Finally, the PWM capabilities of this small integrated circuit are put to work as an audio amplifier, although perhaps not one that would pass muster for the most devout audiophiles among us.

Even though it’s possible to offload a lot of the capabilities of a 555 onto a microcontroller, there’s certainly an opportunity to offload some things to the 555, even if your project still needs a microcontroller. However, offloading tasks like debounce or input latching to hardware rather than spending microcontroller cycles or pins can make a project more robust, both from reliability and software points of view. For some other useful circuits, some of which have been forgotten in the modern microcontroller age, it’s worth taking a look at some of these antique circuit books as well. While we are sure the 555 designers hoped it would be a big hit, no one imagined this giant one.

Continue reading “Using The 555 For Everything”

Meet The Winners Of The 2024 Tiny Games Contest

Over the years, we’ve figured out some pretty sure-fire ways to get hackers and makers motivated for contests. One of the best ways is to put arbitrary limits on different aspects of the project, such as how large it can be or how much power it can consume. Don’t believe us? Then just take a look at the entries of this year’s Tiny Games Contest.

Nearly 80 projects made it across the finish line this time, and our panel of judges have spent the last week or so going over each one to try and narrow it down to a handful of winners. We’ll start things off with the top three projects, each of which will be awarded a $150 gift certificate from our friends at DigiKey.

First: Sub-Surface Simon

While this contest saw a lot of excellent entries, we don’t think anyone is going to be surprised to see this one take the top spot. Earning an exceptionally rare perfect ten score from each of our judges, Sub-Surface Simon from [alnwlsn] grabbed onto the theme of this contest and ran like hell with it. Continue reading “Meet The Winners Of The 2024 Tiny Games Contest”