The One-Transistor Flip-Flop

A flip-flop is one of the most basic digital electronic circuits. It can most easily be built from just two transistors, although they can and have been built out of vacuum tubes, NAND and NOR gates, and Minecraft redstone. Conventional wisdom says you can’t build a flip-flop with just one transistor, but here we are. [roelh] has built a flip-flop circuit using only one transistor and some bizarre logic that’s been slowly developing over on

[roelh]’s single transistor flip-flop is heavily inspired by a few of the strange logic projects we’ve seen over the years. The weirdest, by far, is [Ted Yapo]’s Diode Clock, a digital clock made with diode-diode logic. This is the large-scale proof of concept for the unique family of logic circuits [Ted] came up with that only uses bog-standard diodes to construct arbitrary digital logic.

The single-transistor flip-flop works just like any other flip-flop — there are set and reset pulses, and a feedback loop to keep the whatever state the output is in alive. The key difference here is the addition of a clock signal. This clock, along with a few capacitors and a pair of diodes, give this single transistor the ability to store a single bit of information, just like any other flip-flop.

This is, without a doubt, a really, really weird circuit but falls well into territory that is easily understood despite being completely unfamiliar. The key question here is, ‘why?’. [roelh] says this could be used for homebrew CPUs, although this circuit is trading two transistors for a single transistor, two diodes, and a few more support components. For vacuum tube-based computation, this could be a very interesting idea that someone at IBM in the 40s had, then forgot to write down. Either way, it’s a clever application of diodes and an amazing expression of the creativity that can be found on a breadboard.

An 8-Bit ALU, Entirely From NAND Gates

One of the things that every student of digital electronics learns, is that every single logic function can be made from a combination of NAND gates. But nobody is foolhardy enough to give it a try, after all that would require a truly huge number of gates!

Someone evidently forgot to tell [Notbookies], for he has made a complete 8-bit ALU using only 4011B quad NAND gates on a set of breadboards, and in doing so has created a minor masterpiece with his wiring. It’s inspired by a series of videos from [Ben Eater] describing the construction of a computer with the so-called SAP (Simple As Possible) architecture. The 48 4011B DIP packages sit upon 8 standard breadboards, with an extra one for a set of DIP switches and LEDs, and a set of power busbar breadboards up their sides. He leaves us with the advice borne of bitter experience: “Unless your goal is building a NAND-only computer, pick the best IC for the job“.

We have covered countless processors and processor components manufactured from discrete logic chips over the years, though this makes them no less impressive a feat. The NedoNAND has been a recent example, a modular PCB-based design. TTL and CMOS logic chips made their debut over 50 years ago so you might expect there to be nothing new from that direction, however we expect this to be  well of projects that will keep flowing for may years more.

Via /r/electronics/.

Hackaday Links: December 17, 2017

Where do you go if you want crazy old electronic crap? If you’re thinking a ham swap meet is the best place, think again. [Fran] got the opportunity to clean out the storage closet for the physics department at the University of Pennsylvania. Oh, man is there some cool stuff here. This room was filled to the brim with old databooks and development boards, and a sample kit for the unobtanium Nimo tube.

The Gigatron is a Hackaday Prize entry to build a multi-Megahertz computer with a color display out of TTL logic. Now, all this work is finally paying off. [Marcel] has turned the Gigatron into a kit. Save for the memories, this computer is pretty much entirely 74-series logic implemented on a gigantic board. Someone is writing a chess program for it. It’s huge, awesome, and the kits should cost under $200.

What’s cooler than BattleBots, and also isn’t Junkyard Wars? BattleBots, but in drone form. Drone Clash was originally announced in March, but now they’re moving it up to February to coincide with the TUS Expo. What could be better than flaming piles of lithium?

The Atari Lynx went down in history as the first portable console with a color LCD. There was a problem with the Lynx; the display was absolutely terrible. [RetroManCave] found someone selling an LCD upgrade kit for the Lynx, and the results are extremely impressive. The colors aren’t washed out, and since the backlight isn’t a fluorescent light bulb (yes, really), this Lynx should get a bit more run time for each set of batteries.

Like dead tree carcasses? You need to butcher some dead tree carcasses. The best way to do this is on a proper workbench, and [Paul Sellers] is working on a video series on how to make a workbench. He’s up to episode 3, where the legs are mortised. This is all done with hand tools, and the videos are far more interesting than you would think.

If you need some very small, very blinky wearables, here’s an option. This build is literally three parts — an LED matrix, an ATtiny2313, and a coin cell battery. Seems like this could be an entry for the Coin Cell Challenge we have going on right now.

FPGA Clocks for Software Developers (or Anyone)

It used to be that designing hardware required schematics and designing software required code. Sure, a lot of people could jump back and forth, but it was clearly a different discipline. Today, a lot of substantial digital design occurs using a hardware description language (HDL) like Verilog or VHDL. These look like software, but as we’ve pointed out many times, it isn’t really the same. [Zipcpu] has a really clear blog post that explains how it is different and why.

[Zipcpu] notes something we’ve seen all too often on the web. Some neophytes will write sequential code using Verilog or VHDL as if it was a conventional programming language. Code like that may even simulate. However, the resulting hardware will — at best — be very inefficient and at worst will not even work.

Continue reading “FPGA Clocks for Software Developers (or Anyone)”

Living Logic: Biological Circuits for the Electrically Minded

Did you know you can build fundamental circuits using biological methods? These aren’t your average circuits, but they work just like common electrical components. We talk alot about normal silicon and copper circuits ‘roud here, but it’s time to get our hands wet and see what we can do with the power of life!

In 1703, Gottfried Wilhelm Leibniz published his Explication de l’Arithmétique Binaire (translated). Inspired by the I Ching, an ancient Chinese classic, Leibniz established that the principles of arithmetic and logic could be combined and represented by just 1s and 0s. Two hundred years later in 1907, Lee De Forest’s “Audion” is used as an AND gate. Forty years later in 1947, Brattain and H. R. Moore demonstrate their “PNP point-contact germanium transistor” in Bell Labs (often given as the birth date of the transistor). Six years later in 1953, the world’s first transistor computer was created by the University of Manchester. Today, 13,086,801,423,016,741,282,5001 transistors have built a world of progressing connectivity, automation and analysis.

While we will never know how Fu Hsi, Leibniz, Forest or Moore felt as they lay the foundation of the digital world we know today, we’re not completely out of luck: we’re in the midst’s of our own growing revolution, but this one’s centered around biotechnology. In 1961, Jacob and Monod discovered the lac system: a biological analog to the PNP transistor presented in Bell Labs fourteen years earlier. In 2000, Gardner, Cantor, and Collins created a genetic toggle switch controlled by heat and a synthetic fluid bio-analog2. Today, AND, OR, NOR, NAND, and XOR gates (among others) have been successfully demonstrated in academic labs around the world.

But wait a moment. Revolution you say? Electrical transistors went from invention to computers in 6 years, and biological transistors went from invention to toggle button in 40? I’m going to get to the challenges facing biological circuits in time, but suffice it to say that working with living things that want to be fed and (seem to) like to die comes with its own set of challenges that aren’t relevant when working with inanimate and uncaring transistors. But, in the spirit of hacking, let’s dive right in. Continue reading “Living Logic: Biological Circuits for the Electrically Minded”

Paper Circuit Does Binary Math with Compressed Air

Most of us can do simple math in our heads, but some people just can’t seem to add two numbers between 0 and 3 without using paper, like [Aliaksei Zholner] does with his fluidic adder circuit built completely of paper.

Pneumatic AND gate

There’s some good detail in [Aliaksei]’s translated post on the “Only Paper” forum, a Russian site devoted to incredibly detailed models created entirely from paper. [Aliaksei] starts with the basic building blocks of logic circuits, the AND and OR gates. Outputs are determined by the position of double-headed pistons in chambers, with output states indicated by pistons that raise a flag when pressurized. The adder looks complicated, but it really is just a half-adder and full-adder piped together in exactly the same way it would be wired up with CMOS or TTL gates. The video below shows it in action.

If [Aliaksei]’s name seems familiar, it’s because we’ve featured his paper creations before, including this working organ and a tiny working single cylinder engine. We’re pleased with his foray into the digital world, and we’re looking forward to whatever is next.

Continue reading “Paper Circuit Does Binary Math with Compressed Air”

Hackaday Prize Entry: Hot Logic

A few weeks ago, [Yann] was dumpster diving and found something of interest. Two vacuum tubes, an ECC83S and an EL84. This was obviously the droppings of a local guitarist, but [Yann] wanted to know if he could build something useful out of them. An amplifier is far too pedestrian, so he settled on a vacuum tube computer.

The normal pentodes and triodes you’ll find in a tube amp require a lot of support components like output transformers, tube sockets, and high voltage power supplies. This was a little too complicated for a tube computer, but after a little bit of searching, [Yann] found a better option for his MINIVAC — subminiature vacuum tubes. These require fewer support components, and can be found for very reasonable prices through the usual component suppliers. His entry for this year’s Hackaday Prize is Hot Logic. It’s a computer — or at least computer components — built out of these tubes.

The tubes in question are a few 1Ж29Б-В and 6Н21Б tubes, a vacuum pentode and dual triode, respectively. Add in a few diodes, and that meets the requirements for being sufficient to build a computer. As a neat little bonus, these tubes have requirements that are very easy to meet. The filament on the 1Ж29Б-В tube only needs 1.2 Volts.

These subminiature tubes are a little underappreciated in the world of audiophililia and DIY electronics. That’s a bit of a shame; these tubes are the most technologically advanced vacuum-based technology ever created. They were the heart and the brains of ballistic missiles, and if you look hard enough you source hundreds of them at very reasonable prices. A vacuum tube computer requires a lot of tubes, and if anyone will be able to build a vacuum tube computer it’s going to be [Yann] and his pile of Soviet surplus.