Car Radio Chip Goes Into DIY Build

[Sjef Verhoeven] still loves radio and enjoys the challenge of listening to radio signals from far away. He wanted to build his own radio and turned to the TEF6686 chip, a device often found in car radios. It is known to be very sensitive and seemed perfect for pulling in weak signals. So [Sjef] built this DIY radio and shares the details in this recent Spectrum post.

Unlike older radio-on-chip devices, the TEF6686 is a DSP, which, according to the post, is part of the reason it is ultrasensitive. Even though it is made for car radios, the device is versatile and can pick up shortwave as well as the usual broadcast bands, with the right configuration.

Continue reading “Car Radio Chip Goes Into DIY Build”

PI Board chess board on a table in a room

Chess What: One More Pi-Powered Board

Chess is timeless, but automating it? That’s where the real magic begins. Enter [Tamerlan Goglichidze]’s Pi Board, an automated chess system that blends modern tech with age-old strategy. Inspired by Harry Potter’s moving chessboard and the commercial Square Off board, [Tamerlan] re-imagines the concept using a Raspberry Pi, stepper motors, and some clever engineering. It’s not just about moving pieces — it’s about doing so with precision and flair.

At its core, the Pi Board employs an XY stepper motor grid coupled with magnets to glide chess pieces across the board. While electromagnets seemed like a promising start, [Tamerlan] found them impractical due to overheating and polarity-switching issues. Enter servo linear actuators: efficient, precise, and perfect for the job.

But the innovation doesn’t stop there. A custom algorithm maps the 8×8 chess grid, allowing motors to track positions dynamically—no tedious resets required. Knight movements and castling? Handled with creative coding that keeps gameplay seamless. [Tamerlan] explains it all in his sleekly designed build log.

Though it hasn’t been long since we featured a Pi-powered LED chess board, we feel that [Tamerlan]’s build stands out for its ingenuity and optimization. For those still curious, we have a treasure trove of over fifty chess-themed articles from the last decade. So snuggle up during these cold winter months and read up on these evergreens!

Continue reading “Chess What: One More Pi-Powered Board”

Holograms: The Art Of Recording Wavefronts

The difference between holography and photography can be summarized perhaps most succinctly as the difference between recording the effect photons have on a surface, versus recording the wavefront which is responsible for allowing photographs to be created in the first place. Since the whole idea of ‘visible light’ pertains to a small fragment of the electromagnetic (EM) spectrum, and thus what we are perceiving with our eyes is simply the result of this EM radiation interacting with objects in the scene and interfering with each other, it logically follows that if we can freeze this EM pattern (i.e. the wavefront) in time, we can then repeat this particular pattern ad infinitum.

Close-up of the wavefront pattern recorded on the holographic film (Credit: 3Blue1Brown, YouTube)
Close-up of the wavefront pattern recorded on the holographic film (Credit: 3Blue1Brown, YouTube)

In a recent video by [3Blue1Brown], this process of recording the wavefront with holography is examined in detail, accompanied by the usual delightful visualizations that accompany the videos on [3Blue1Brown]’s channel. The type of hologram that is created in the video is the simplest type, called a transmission hologram, as it requires a laser light to illuminate the holographic film from behind to recreate the scene. This contrasts with a white light reflection hologram, which can be observed with regular daylight illumination from the front, and which is the type that people are probably most familiar with.

The main challenge is, perhaps unsurprisingly, how to record the wavefront. This is where the laser used with recording comes into play, as it forms the reference wave with which the waves originating from the scene interact, which allows for the holographic film to record the latter. The full recording setup also has to compensate for polarization issues, and the exposure time is measured in minutes, so it is very sensitive to any changes. This is very much like early photography, where monochromatic film took minutes to expose. The physics here are significant more complex, of course, which the video tries to gently guide the viewer through.

Also demonstrated in the video is how each part of the exposed holographic film contains enough of the wavefront that cutting out a section of it still shows the entire scene, which when you think of how wavefronts work is quite intuitive. Although we’re still not quite in the ‘portable color holocamera’ phase of holography today, it’s quite possible that holography and hologram-based displays will become the standard in the future.

Continue reading “Holograms: The Art Of Recording Wavefronts”

Scratch And Sniff Stickers And The Gas Panic Of ’87

Ever wonder how those scratch and sniff stickers manage to pack a punch of aroma into what looks like ordinary paper? The technology behind it is deceptively clever, and has been used everywhere from children’s books to compact discs.

Most Scratch and Sniff stickers are simple nose-based novelties, though they’ve seen other uses as diagnostic tools, too. As Baltimore Gas and Electric discovered in 1987, though, these stickers can also cause a whole lot of hullabaloo. Let’s explore how this nifty technology works, and how it can go—somewhat amusingly—wrong.

The Science

3M developed the scratch and sniff technology in the 1960s. It quickly gained iconic status in the decades that followed. via eBay

At its heart, scratch and sniff technology involves the microencapsulation of tiny smellable particles, which are then impregnated into stickers or other paper products. Microscopic amounts of aromatic materiale are trapped inside gelatin or plastic capsules, and then stuck to paper. When you scratch the surface, these capsules rupture, releasing their aromatic cargo into the air. It’s an elegant feat of materials engineering, originally developed by Gale W. Matson. Working at 3M in the 1960s, he’d been intending to create a new kind of carbonless copy paper.

Scratch and Sniff stickers soon became a popular novelty in the 1970s. The catchy name was perfect—it told you everything you need to know. A children’s book named Little Bunny Follows His Nose was one of the first widespread applications. Released in 1971, it  was entirely based around the whole scratch and sniff concept. Children could read along and scratch various illustrations of peaches, roses and pine needles to see what they smelled like. The book was reprinted multiple times, remaining in publication for over three decades.

Other popular media soon followed. Pop rock band The Raspberries put a scratch and sniff sticker on their album cover in 1972. Director John Waters would go on to release his 1981 film Polyester with an accompanying “Odorama” card, which featured multiple smells for viewers to sniff during the movie. The concept still resurfaces occasionally, though the gimmick is now well-worn. In 2010, Katy Perry’s Teenage Dream album smelled like cotton candy thanks to a scratch-and-sniff treatment on the Deluxe Edition, and King Gizzard & The Lizard Wizard put a similar touch on 2017’s Flying Microtonal Banana. Continue reading “Scratch And Sniff Stickers And The Gas Panic Of ’87”

OSHW Battery Tester Aims To Help Tame Lithium Cells

It’s no exaggeration to say that the development of cheap rechargeable lithium-ion batteries has changed the world. Enabling everything from smartphones to electric cars, their ability to pack an incredible amount of energy into a lightweight package has been absolutely transformative over the last several decades. But like all technologies, there are downsides to consider — specifically, the need for careful monitoring during charging and discharging.

As hardware hackers, we naturally want to harness this technology for our own purposes. But many are uncomfortable about dealing with these high-powered batteries, especially when they’ve been salvaged or come from some otherwise questionable origin. Which is precisely what the Smart Multipurpose Battery Tester from [Open Green Energy] is hoping to address.

Continue reading “OSHW Battery Tester Aims To Help Tame Lithium Cells”

Torque Testing 3D Printed Screws

Unless you’ve got a shop with a well-stocked hardware bin, it’s a trip to the hardware store when you need a special screw. But [Sanford Prime] has a different approach: he prints his hardware, at least for non-critical applications. Just how much abuse these plastic screws can withstand was an open question, though, until he did a little torque testing to find out.

To run the experiments, [Sanford]’s first stop was Harbor Freight, where he procured their cheapest digital torque adapter. The test fixture was similarly expedient — just a piece of wood with a hole drilled in it and a wrench holding a nut. The screws were FDM printed in PLA, ten in total, each identical in diameter, length, and thread pitch, but with differing wall thicknesses and gyroid infill percentages. Each was threaded into the captive nut and torqued with a 3/8″ ratchet wrench, with indicated torque at fastener failure recorded.

Perhaps unsurprisingly, overall strength was pretty low, amounting to only 11 inch-pounds (1.24 Nm) at the low end. The thicker the walls and the greater the infill percentage, the stronger the screws tended to be. The failures were almost universally in the threaded part of the fastener, with the exception being at the junction between the head and the shank of one screw. Since the screws were all printed vertically with their heads down on the print bed, all the failures were along the plane of printing. This prompted a separate test with a screw printed horizontally, which survived to a relatively whopping 145 in-lb, which is twice what the best of the other test group could manage.

[Sanford Prime] is careful to note that this is a rough experiment, and the results need to be taken with a large pinch of salt. There are plenty of sources of variability, not least of which is the fact that most of the measured torques were below the specified lower calibrated range for the torque tester used. Still, it’s a useful demonstration of the capabilities of 3D-printed threaded fasteners, and their limitations.

Continue reading “Torque Testing 3D Printed Screws”

From Cans To Sheet Metal, With Ease

Aluminium drinks cans make a great source of thin sheet metal which can be used for all manner of interesting projects, but it’s safe to say that retrieving a sheet of metal from a can is a hazardous process. Cut fingers and jagged edges are never far away, so [Kevin Cheung]’s work in making an easy can cutter is definitely worth a look.

Taking inspiration from a rotary can opener, he uses a pair of circular blades in an adjustable injection moulded plastic frame. If you’ve used a pipe cutter than maybe you are familiar with the technique, as the blade rotates round the can a few times it slowly scores and cuts through the metal. Doing the job at both ends of the can reveals a tube, which cna be then cut with scissors and flattened to make a rectangular metal sheet. Those edges are probably sharp, but nothing like the jagged finger-cutters you’d get doing the same by hand. The full video can be seen below the break, and the files to 3D print the plastic parts of the cutter can be found at the bottom of a page describing the use of cans to make a shingle roof.

Continue reading “From Cans To Sheet Metal, With Ease”