Robot Jellyfish Fueled By Hydrogen From The Water Around It

RoboJelly is certainly not what we’re used to seeing when it comes to robots. Instead of a cold metallic skeleton, this softie is modeled after jellyfish which have no bones. But that’s not the only thing that’s unusual about it. This robot also doesn’t carry its own power source. It gets the energy needed for locomotion from the water around it.

Artificial muscles are what give this the movement seen in the clip after the break. These muscles react to heat, and that heat is produced through a chemical reaction. The construction method starts with the muscle material, which is then covered in carbon nanotubes, and finally coated with black platinum dust. Sounds a bit like witchcraft, huh (Eye of newt, dragon heart string, etc.)? We certainly don’t have the chemistry background to understand how this all works. But we are impressed. So far it doesn’t have the ability to change direction, the flexing of all of the muscle material happens at the same time. But the next step in their research will be finding a way to route the “fuel” to give it some direction.

Edit – Looks like it is fueled externally. The actual study is here, but you need to log in to download it.

This brings another jellyfish-inspired robot to mind. Check out FESTO’s offering which flies through the air with the greatest of ease.

Continue reading “Robot Jellyfish Fueled By Hydrogen From The Water Around It”

Artemis’ Next Giant Leap: Orbital Refueling

By the end of the decade, NASA’s Artemis program hopes to have placed boots back on the Moon for the first time since 1972. But not for the quick sightseeing jaunts of the Apollo era — the space agency wants to send regular missions made up of international crews down to the lunar surface, where they’ll eventually have permanent living and working facilities.

The goal is to turn the Moon into a scientific outpost, and that requires a payload delivery infrastructure far more capable than the Apollo Lunar Module (LM). NASA asked their commercial partners to design crewed lunar landers that could deliver tens of tons of to the lunar surface, with SpaceX and Blue Origin ultimately being awarded contracts to build and demonstrate their vehicles over the next several years.

Starship and Blue Moon, note scale of astronauts

At a glance, the two landers would appear to have very little in common. The SpaceX Starship is a sleek, towering rocket that looks like something from a 1950s science fiction film; while the Blue Moon lander utilizes a more conventional design that’s reminiscent of a modernized Apollo LM. The dichotomy is intentional. NASA believes there’s a built-in level of operational redundancy provided by the companies using two very different approaches to solve the same goal. Should one of the landers be delayed or found deficient in some way, the other company’s parallel work would be unaffected.

But despite their differences, both landers do utilize one common technology, and it’s a pretty big one. So big, in fact, that neither lander will be able to touch the Moon until it can be perfected. What’s worse is that, to date, it’s an almost entirely unproven technology that’s never been demonstrated at anywhere near the scale required.

Continue reading “Artemis’ Next Giant Leap: Orbital Refueling”

Fuel Cell Turns PET And Carbon Dioxide Into Useful Chemicals

The University of Cambridge has a novel fuel cell design that can grab CO2 from the atmosphere or industrial processes and, combined with waste PET plastic, provides syngas and glycolic acid, a product used in some cosmetics. You can read about the device in a recent paper.

The strange juxtaposition of CO2 and PET is no accident. The processes work together with solar energy. There is no external voltage required, but the cell operates as a photocell to produce electricity from the solar energy. Removing both CO2 and waste plastic from the environment is a good thing.

Syngas is hydrogen and carbon monoxide and finds use in producing methanol and ammonia. It also will work as a fuel that can replace gasoline when gasoline isn’t available. It has a few other uses, like reducing iron ore to sponge iron and even converting methanol to gasoline.

The technology has a ways to go to operate at scale, and we doubt this will ever be a consumer item since you are unlikely to need syngas or glycolic acid in your home or vehicle. But it still is a promising technique to reduce both greenhouse gas and plastic waste in one swoop.

We’ve looked at other ways to grab carbon dioxide and make it useful. If you want to make your own syngas, there are other ways to do it.

Metallurgist working by the blast furnaces in Třinec Iron and Steel Works. (Credit: Třinecké železárny)

We Already Live In A Hydrogen Economy: Steel Production, Generator Cooling, And Welding Gas

Although generally hydrogen is only mentioned within the context of transportation and energy storage, by far the most useful applications are found in industrial applications, including for the chemical industry, the manufacturing of steel, as well as that of methanol and fertilizer. This is illustrated by how today most of all hydrogen produced today is used for these industrial applications, as well as for applications such as cooling turbo generators, with demand for hydrogen in these applications rapidly increasing.

Currently virtually all hydrogen produced today comes from natural gas, via steam methane reformation (SMR), with potentially methane pyrolysis making natural gas-derived hydrogen a low-carbon source. The remainder of hydrogen comes from coal gasification and a small fraction from electrolysis of water. The hydrogen is often produced on-site, especially at industrial plants and thermal power plants. So aside from any decarbonization efforts, there are many uses for hydrogen which the public appears to be generally unaware of.

This leads us to the somewhat controversial hydrogen ladder.

Continue reading “We Already Live In A Hydrogen Economy: Steel Production, Generator Cooling, And Welding Gas”

Making Hydrogen With Solar Energy, With Oxygen And Heat A Bonus

Hydrogen is a useful gas. Whether you want to float an airship, fuel a truck, or heat an industrial process, hydrogen can do the job. However, producing it is currently a fraught issue. While it can be produced cleanly using renewable energy, it’s often much cheaper to split it out of hydrocarbon fuels using processes that generate significant pollution.

There are methods to generate hydrogen more efficiently, though, in a clean and sustainable process. that also produces useful heat and oxygen as byproducts. The key to the process? Concentrated sunshine.
Continue reading “Making Hydrogen With Solar Energy, With Oxygen And Heat A Bonus”

Hackaday Podcast 213: Not Your Grandfather’s Grandfather Clock, The Engineering Behind Art, Hydrogen Powered Flight

Join Hackaday Editors Elliot Williams and Tom Nardi as they review some of their favorite hacks and projects of the past week. The episode starts with a discussion about the recently announced Artemis II crew, and how their mission compares to the Apollo program of the 1960s and 70s.

From there, the pair theorize as to why Amazon’s family of Echo devices have managed to evade eager hardware hackers, take a look at a very impressive SMD soldering jig created with some fascinating OpenSCAD code, marvel at the intersection of art and electronic design, and wonder aloud where all the cheap motorized satellite dishes are hiding. Stick around for some questionable PCB design ideas, a Raspberry Pi expansion that can read your mind, and the first flight of a (semi) hydrogen-powered aircraft.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download your own personal copy!

Continue reading “Hackaday Podcast 213: Not Your Grandfather’s Grandfather Clock, The Engineering Behind Art, Hydrogen Powered Flight”

Methane Pyrolysis: Producing Green Hydrogen Without Carbon Emissions

Generally, when we talk about the production of hydrogen, the discussion is about either electrolysis of water into oxygen and hydrogen, or steam methane reforming (SMR). Although electrolysis is often mentioned – as it can create hydrogen using nothing but water and electricity – SMR is by far the most common source of hydrogen. Much of this is due to the low cost and high efficiency of SMR, but a major disadvantage of SMR is that :slider

large amounts of carbon dioxide are released, which offsets some of the benefits of using hydrogen as a fuel in the first place.

Although capturing this CO2 can be considered as a potential solution here, methane pyrolysis is a newer method that promises to offer the same benefits as SMR while also producing hydrogen and carbon, rather than CO2. With the many uses for hydrogen in industrial applications and other fields, such as the manufacturing of fertilizer, a direct replacement for SMR that produces green hydrogen would seem almost too good to be true.

What precisely is this methane pyrolysis, and what can be expect from it the coming years?

Continue reading “Methane Pyrolysis: Producing Green Hydrogen Without Carbon Emissions”