Brush Up On Your Trade Craft With This Tiny FM Bug

Would-be spooks and spies, take note: this one-transistor FM transmitter is a circuit you might want to keep in mind for your bugging needs. True, field agents aren’t likely to need to build their own equipment, but how cool a spy would you be if you could?

Luckily, you won’t need too many parts to recreate [Ciprian (YO6DXE)]’s project, most of which could be found in a decently stocked junk bin, or even harvested from e-waste. On the downside, the circuit is pretty fussy, with even minor component value changes causing a major change in center frequency. [Ciprian] had to do a lot of fiddling to get the frequency in the FM band, particularly with the inductor in the LC tank circuit. Even dropping battery voltage shifted the frequency significantly, which required a zener diode to address.

[Ciprian] ran a few tests and managed to get solid copy out to 80 meters range, which is pretty impressive for such a limited circuit. The harmonics, which extend up into the ham bands and possibly beyond, are a bit of a problem; while those could be addressed with a low-pass filter, in practical terms, the power of this little fellow is probably low enough to keep you from getting into serious trouble. Still, it’s best not to push your luck.

While you’re trying your hand at one-transistor circuits, you might want to try [Ciprian]’s one-transistor CW transceiver next.

Continue reading “Brush Up On Your Trade Craft With This Tiny FM Bug”

Farewell Economy 7, A Casualty Of The Long Wave Switch-Off

If you paid attention to advertising in 1980s Britain, you were never far from Economy 7. It was the magic way to heat your house for less, using storage heaters which would run at night using cheap electricity, and deliver warmth day-long. Behind it all was an unseen force, a nationwide radio switching signal transmitted using the BBC’s 198 kHz Long Wave service. Now in 2025 the BBC Radio 4 Long Wave service it relies on is to be turned off, rendering thousands of off-peak electricity meters still installed, useless. [Ringway Manchester] is here to tell the tale.

The system was rolled out in the early 1980s, and comprised of a receiver box which sat alongside your regular electricity meter and switched in or out your off-peak circuit. The control signal was phase-modulated onto the carrier, and could convey a series of different energy use programs. 198 kHz had the useful property due to its low frequency of universal coverage, making it the ideal choice. As we’ve reported in the past the main transmitter at Droitwich is to be retired due to unavailability of the high-power vacuum tubes it relies on, so now time’s up for Economy 7 too. The electricity companies are slow on the uptake despite years of warning, so there’s an unseemly rush to replace those old meters with new smart meters. The video is below the break.

The earliest of broadcast bands may be on the way out, but it’s not entirely over. There might even be a new station on the dial for some people.

Continue reading “Farewell Economy 7, A Casualty Of The Long Wave Switch-Off”

Using Integer Addition To Approximate Float Multiplication

Once the domain of esoteric scientific and business computing, floating point calculations are now practically everywhere. From video games to large language models and kin, it would seem that a processor without floating point capabilities is pretty much a brick at this point. Yet the truth is that integer-based approximations can be good enough to hit the required accuracy. For example, approximating floating point multiplication with integer addition, as [Malte Skarupke] recently had a poke at based on an integer addition-only LLM approach suggested by [Hongyin Luo] and [Wei Sun].

As for the way this works, it does pretty much what it says on the tin: adding the two floating point inputs as integer values, followed by adjusting the exponent. This adjustment factor is what gets you close to the answer, but as the article and comments to it illustrate, there are plenty of issues and edge cases you have to concern yourself with. These include under- and overflow, but also specific floating point inputs.

Unlike in scientific calculations where even minor inaccuracies tend to propagate and cause much larger errors down the line, graphics and LLMs do not care that much about float point precision, so the ~7.5% accuracy of the integer approach is good enough. The question is whether it’s truly more efficient as the paper suggests, rather than a fallback as seen with e.g. integer-only audio decoders for platforms without an FPU.

Since one of the nice things about FP-focused vector processors like GPUs and derivatives (tensor, ‘neural’, etc.) is that they can churn through a lot of data quite efficiently, the benefits of shifting this to the ALU of a CPU and expecting (energy) improvements seem quite optimistic.

Windows On ARM On Arm

While some companies like Apple have gone all-in on the ARM architecture, others are more hesitant to dive into the deep end. For example, Microsoft remains heavily invested in the x86 architecture and although it does have some ARM offerings, a lot of them feel a bit half-baked. So you might question why someone like [Gustave] has spent so much time getting Windows to run on unusual ARM platforms. But we don’t need much of a reason to do something off-the-wall like that around these parts, so take a look at his efforts to get Windows for ARM running on a smartwatch.

The smartwatch in question here is a Pixel Watch 3, which normally runs a closed-source Android implementation called Wear OS. The bootloader can be unlocked, so [Gustave] took that approach to implement a few clever workarounds to get Windows to boot including adding UEFI to the watch. During the process Google updated these devices to Android 15, though, which broke some of these workarounds. The solution at that point was to fake a kernel header and re-implement UEFI and then load Windows (technically Windows PE) onto the watch.

Although this project was released on April 1, and is by [Gustave]’s own admission fairly ridiculous and not something he actually recommends anyone do, he does claim that it’s real and provides everything needed for others to run Windows on their smartwatches if they want to. Perhaps one of our readers will be brave enough to reproduce the results and post about it in the comments. In the meantime, there are a few more open options for smartwatches available if you’re looking for something to tinker with instead.

Thanks to [Ruhan] for the tip!

A New Mechanical Keyboard For An Old Computer

As computers age, a dedicated few work towards keeping some of the more interesting ones running. This is often a losing battle of sorts, as the relentless march of time comes for us all, human and machine alike. So as fewer and fewer of these machines remain new methods are needed to keep them running as best they can. [CallousCoder] demonstrates a way of building up a new keyboard for a Commodore 64 which both preserves the original look and feel of the retro computer but also adds some modern touches.

One of the main design differences between many computers of the 80s and modern computers is that the keyboard was often built in to the case of the computer itself. For this project, that means a custom 3D printed plate that can attach to the points where the original keyboard would have been mounted inside the case of the Commodore. [CallousCoder] is using a print from [Wolfgang] to get this done, and with the plate printed and a PCB for the keys it was time to start soldering. The keyboard uses modern switches and assembles like most modern keyboards do, with the exception of the unique layout for some of the C64 keys including a latching shift key, is fairly recognizable for anyone who has put together a mechanical keyboard before.

[CallousCoder] is using the original keycaps from a Commodore 64, so there is an additional step of adding a small adapter between the new switches and the old keycaps. But with that done and some amount of configuring, he has a modern keyboard that looks like the original. If you’re more a fan of the original hardware, though, you can always take an original C64 keyboard and convert it to USB to use it on your modern machines instead.

Continue reading “A New Mechanical Keyboard For An Old Computer”

Improving Magnetoplasmadynamic Ion Thrusters With Superconductors

Ion thrusters are an amazing spacecraft propulsion technology, providing very high efficiency with relatively little fuel. Yet getting one to produce more thrust than that required to lift a sheet of A4 paper requires a lot of electricity. This is why they have been only used for applications where sustained thrust and extremely low fuel usage are important, such as the attitude management of satellites and other spacecraft. Now researchers in New Zealand have created a prototype magnetoplasmadynamic (MPD) thruster with a superconducting electromagnet that is claimed to reduce the required input power by 99% while generating a three times as strong a magnetic field.

Although MPD thrusters have been researched since the 1970s – much like their electrostatic cousins, Hall-effect thrusters – the power limitations on the average spacecraft have limited mission profiles. Through the use of a high-temperature superconducting electromagnet with an integrated cryocooler, the MPD thruster should be able to generate a very strong field, while only sipping power. Whether this works and is as reliable as hoped will be tested this year when the prototype thruster is installed on the ISS for experiments.

Ask Hackaday: What’s A Sun-Like Star?

Is a bicycle like a motorcycle? Of course, the answer is it is and it isn’t. Saying something is “like” something else presupposes a lot of hidden assumptions. In the category “things with two wheels,” we have a winner. In the category “things that require gasoline,” not so much. We’ve noticed before that news stories about astronomy often talk about “sun-like stars” or “Earth-like planets.” But what does that really mean? [Paul Gilster] had the same questions, if you want to read his opinion about it.

[Paul] mentions that even textbooks can’t agree. He found one that said that Centauri A was “sun-like” while Centauri B was sometimes considered sun-like and other times not. So while Paul was looking at the examples of press releases and trying to make sense of it all, we thought we’d just ask you. What makes a star like our sun? What makes a planet like our planet?

Continue reading “Ask Hackaday: What’s A Sun-Like Star?”