Thermoelectric Blaster Flings Ice Projectiles

Nerf blasters are fun and all, but flinging foam can get old. Picking it up again, even moreso. This blaster from [Concept Crafted Creations] gets around that annoying problem by shooting ice instead. 

The concept was to build a better water gun with longer range—and what better way to do that than by shooting ice instead? The blaster relies on a PVC air tank for propulsion—one of the most controversial design choices you can make if you read the comments around here. It’s charged by a small air compressor, and dumping the air is handled by a solenoid valve. So far, so simple.

What makes this blaster special is where it gets its ammunition from. The blaster uses a custom CNC-machined block from PCBway to act as a freeze chamber. Water enters an aluminum block, and is cooled by thermoelectric elements. Once the projectile has frozen inside the chamber, it’s stuck in place, so the chamber is then heated by a small heating element. This melts the projectile just enough to allow it to be fired.

It’s a complicated but ingenious way of building an ice blaster. It does pack some real punch, too. It shoots the ice projectiles hard enough to shatter wine glasses. That’s enough to tell us you don’t want to be aiming this thing at your pals in a friendly match of Capture the Flag. Stick to paintballs, perhaps. Video after the break. Continue reading “Thermoelectric Blaster Flings Ice Projectiles”

Making A Unique Type Of Wind Gauge For Home Assistant Use

Sometimes, it’s nice to know how windy it is outside. Knowing the direction of the wind can be a plus, too. To that end, [Sebastian Sokołowski] built himself an unusual anemometer—a wind gauge—to feed into his smart home system.

[Sebastian’s] build is able to tell both wind speed and direction—and with no moving parts! Sort of, anyway. That makes the design altogether different from the usual cup type anemometers with wind vanes that you might be used to seeing on home weather stations. [Sebastian] wanted to go a different route—he wanted a sensor that wouldn’t be so subject to physical wear over time.

The build relies on strain gauges. Basically, [Sebastian] 3D printed a sail-like structure that will flex under the influence of the wind. With multiple strain gauges mounted on the structure, it’s possible to determine the strength of the wind making it flex and in what direction. [Sebastian] explains how this is achieved, particularly involving the way the device compensates for typical expansion and contraction due to temperature changes.

It’s a really unique way to measure wind speed and direction; we’d love to learn more about how it performs in terms of precision, accuracy, and longevity—particularly with regards to regular mechanical and ultrasonic designs. We’ll be keeping a close eye on [Sebastian’s] work going forward. Video after the break.

Continue reading “Making A Unique Type Of Wind Gauge For Home Assistant Use”

Retrogadgets: Oscilloscope Cameras

Today, if you want to get a picture from your oscilloscope — maybe to send to a collaborator or to stick in a document or blog post — it is super easy. You can push an image to a USB stick or sometimes even just use the scope’s PC or web interface to save the picture directly to your computer. Of course, if it is on the computer, you could use normal screen capture software. But that hasn’t always been the case. Back in the days when scopes were heavy and expensive, if you wanted to capture an image from the tube, you took a picture. While you might be able to hold up your camera to the screen, they made specific cameras just for this purpose.

Continue reading “Retrogadgets: Oscilloscope Cameras”

The 1987 Videonics Editing System

Videonics: The Dawn Of Home Video Editing, Revisited

Here’s a slice of history that will make any retro-tech fan grin: before TikTok and iMovie, there was a beast called the Videonics DirectED Plus. This early attempt at democratizing video editing saved enthusiasts from six-figure pro setups—but only barely. Popular Science recently brought this retro marvel back to life in a video made using the very system that inspired it. Picture it: 1987, VHS at its peak, where editing your kid’s jazz recital video required not just love but the patience of a saint, eight VCRs, three Videonics units, two camcorders, and enough remotes to operate a space shuttle.

The Videonics DirectED Plus held promise with a twist. It offered a way to bypass monstrous editing rigs, yet mastering its panel of buttons felt like deciphering hieroglyphs. The ‘Getting Started’ tape was the analog era’s lifeline, often missing and leaving owners hunting through second-hand stores, forgotten basements, and enthusiast forums. Fast forward to today, and recreating this rig isn’t just retro fever—it’s a scavenger hunt.

The 1987 Videonics Editing SystemOnce assembled, the system resembled a spaghetti junction of cables and clunky commands. One wrong button press could erase precious minutes of hard-won footage. Still, the determination of DIY pioneers drove the machine’s success, setting the stage for the plug-and-play ease we now take for granted.

These adventures into retro tech remind us of the grit behind today’s seamless content creation. Curious for more? Watch the full journey by Popular Science here.

Continue reading “Videonics: The Dawn Of Home Video Editing, Revisited”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With All The Espionage

[Ziddy Makes] describes this cute little guy as a biblically-accurate keyboard. For the unfamiliar, that’s a reference to biblically-accurate angels, which have wings (and sometimes eyes) all over the place. They’re usually pretty scary to behold. Don’t say I didn’t warn you.

A cube keyboard with adorably vibrant pastel keycaps.
Image by [Ziddy Makes] via GitHub
But this? This is the opposite of scary. Sure, there are keys everywhere. But it’s just so darn adorable. You know what? It’s those keycaps.

This 16-key macro cube uses a Pro Micro and a system of PH2 5p ribbon cables to connect the four four-key sisterboards to the main board. A 3D-printed base holds all the boards in place. Out of all the switches in the world, [Ziddy] chose Otemu Blues. Clack!

Although it may take some getting used to, this seems like it would be a fun way to input macros. I can see the case for putting some rubber feet on the bottom, otherwise it might scoot around on the desk. That might be cute, but only the first couple of times, you know?

Continue reading “Keebin’ With Kristina: The One With All The Espionage”

The Constant Monitoring And Work That Goes Into JWST’s Optics

The James Webb Space Telescope’s array of eighteen hexagonal mirrors went through an intricate (and lengthy) alignment and calibration process before it could begin its mission — but the process is far from being a one-and-done. Keeping the telescope aligned and performing optimally requires constant work from its own team dedicated to the purpose.

Alignment of the optical elements in JWST are so fine, and the tool is so sensitive, that even small temperature variations have an effect on results. For about twenty minutes every other day, the monitoring program uses a set of lenses that intentionally de-focus images of stars by a known amount. These distortions contain measurable features that the team uses to build a profile of changes over time. Each of the mirror segments is also checked by being imaged selfie-style every three months.

This work and maintenance plan pays off. The team has made over 25 corrections since its mission began, and JWST’s optics continue to exceed specifications. The increased performance has direct payoffs in that better data can be gathered from faint celestial objects.

JWST was fantastically ambitious and is extremely successful, and as a science instrument it is jam-packed with amazing bits, not least of which are the actuators responsible for adjusting the mirrors.

Why The Saturn V Used Kerosene For Its Hydraulics Fluid

We usually think of a hydraulic system as fully self-contained, with a hydraulic pump, tubing, and actuators filled with a working fluid. This of course adds a lot of weight and complexity that can be undesirable in certain projects, with the Saturn V Moon rocket demonstrating a solution to this which is still being used to this day. In a blast-from-the-past, a December 1963 article originally published in Hydraulics & Pneumatics details the kerosene-based hydraulics (fueldraulics) system for the S-1C stage’s gimbal system that controlled the four outer engines.

Rather than a high-pressure, MIL-H-5606 hydraulic oil-based closed loop as in the Saturn I, this takes kerosene from the high-pressure side of the F1 rocket engine’s turbopump and uses it in a single-pass system. This cuts out a separate hydraulic pump, a hydraulic reservoir, which was mostly beneficial in terms of reducing points of failure (and leaks), ergo increasing reliability. Such was the theory at the time at least, and due to issues with RP-1 kerosene’s relatively low flash point and differences in lubricity properties, ultimately RJ-1, RP-1 and MIL-H-5606 were used during checkout leading up to the launch.

In hindsight we know that this fueldraulic system worked as intended with all Saturn V launches, and today it’s still used across a range of aircraft in mostly jet engines and actuators elsewhere of the Boeing 777 as well as the F-35. In the case of the latter it only made the news when there was an issue that grounded these jets due to badly crimped lines. Since fueldraulics tends to be lower pressure, this might be considered a benefit in such cases too, as anyone who has ever experienced a hydraulic line failure can attest to.


Featured image: Gimbal systems proposed for the F-1, oxygen-kerosene engine with a fueldraulic system. (Source: Hydraulics & Pneumatics, 1963)