Binary Clock

Binary Clock Would Make Doc Brown Proud

[Brett] was looking for a way to improve on an old binary clock project from 1996. His original clock used green LEDs to denote between a one or a zero. If the LED was lit up, that indicated a one. The problem was that the LEDs were too dim to be able to read them accurately from afar. He’s been wanting to improve on his project using seven segment displays, but until recently it has been cost prohibitive.

[Brett] wanted his new project to use 24 seven segment displays. Three rows of eight displays. To build something like this from basic components would require the ability to switch many different LEDs for each of the seven segment displays. [Brett] instead decided to make things easier by using seven segment display modules available from Tindie. These modules each contain eight displays and are controllable via a single serial line.

The clock’s brain is an ATmega328 running Arduino. The controller keeps accurate time using a DCF77 receiver module and a DCF77 Arduino library. The clock comes with three display modes. [Brett] didn’t want and physical buttons on his beautiful new clock, so he opted to use remote control instead. The Arduino is connected to a 433MHz receiver, which came paired with a small remote. Now [Brett] can change display modes using a remote control.

A secondary monochrome LCD display is used to display debugging information. It displays the time and date in a more easily readable format, as well as time sync information, signal quality, and other useful information. The whole thing is housed in a sleek black case, giving it a professional look.

Master Clock Keeps Time For All Other Clocks

[Brett] just finished construction and long-term testing of this extremely accurate timepiece. It keeps such great time by periodically syncing with the atomic clock in Mainflingen, Germany.

The core of the project is an ATMega328 which uses the new DCF77 library for decoding the signal broadcast by an atomic clock. The libraries written by Udo Klein significantly increase the noise tolerance of the device reading the signal, but they will not work with any project that use a resonator rather than a crystal.

In the event of a complete signal loss from the atomic clock, the micro driving the clock also has a backup crystal that can keep the clock running to an accuracy of within 1 second per day. The clock can drive slave clocks as well, using pulses with various timings depending on what [Brett] needs them to do. The display is no slouch either: six seven-segment displays show the time and an LCD panel reads out data about the clock. It even has chimes for the hour and quarter hour, and is full of many other features to boot!

One of the most annoying things about timekeeping is daylight savings time corrections, and this clock handles that with a manual switch. This can truly take care of all of your timekeeping needs!

THP Entry: Atomic Space Time

LCD featuring HaD logo

Accurate time is all around us. Streaming down from satellites thousands of miles in space, UTC time information is at all of our fingertips. You just have to know how to reach out and grab it. [hkdcsf] not only knows how to do this, he does it in style.

Tipping his hat into The Hackaday Prize contest, [hkdcsf]’s atomic clock is masterfully crafted. Not only does it get time information from GPS satellites, it also has the ability to grab the infomation from the DCF77 transmitter. And if ever it’s in a position where neither signal can be found, an RTC crystal keeps the time and date accurate.

His design is based on a PIC18F25K20, and bristles with so many features that it might make you dizzy. So be warned – you might want to be in a seated position before taking a look at this project. [hkdcsf] does a great job at detailing exactly how his clock works, and his efforts to provide this level of detail will surely help other hackers to add similar features to their future projects.


SpaceWrencherThe project featured in this post is an entry in The Hackaday Prize. Build something awesome and win a trip to space or hundreds of other prizes.

Continue reading “THP Entry: Atomic Space Time”

LCD-based QR Clock

Here’s a new take on the QR clock concept that uses an LCD display. The concept comes from the work [ch00f] put into his two versions of a QR clock (both of which used LED arrays). The time of day is encoded using the Quick Response Code standard. This version generates a new code each second which encapsulates date, hour, minute, and second information. If you look at the image on the left you’ll notice the code is not centered. Take a look at the video after the break and you’ll see that’s because it’s bouncing around the LCD like a screensaver. Watch a little longer and you’ll see the psychedelic effects shown in the image on the right.

A PIC32 is driving the display. It’s connected to a DCF77 radio module which feeds the system atomic clock data. The color plasma effects are used to show when the device has locked onto the radio signal.

Continue reading “LCD-based QR Clock”

Make Your Own Atomic Clock

We see plenty of clock projects come through, but usually it is their visual or mechanical design that stands out. The DCF-77 LED PIC clock is fun because it is synchronized with the Atomic clock in Braunschweig Germany. The clock picks up the radio signal at 77.5 KHz known as DCF77, and that’s where it got its name.

The circuit looks surprisingly simple and usually costs less than $30 to build, depending on how you piece it together. You can download the schematics and code from the site, but you may have to do a little research about how to catch the signal from your location. The person who wrote this was located in Europe.

[found via HackedGadgets]