Simulating A Time-Keeping Radio Signal

As far as timekeeping goes, there’s nothing more accurate and precise than an atomic clock. Unfortunately, we can’t all have blocks of cesium in our basements, so various agencies around the world have maintained radio stations which, combined with an on-site atomic clock, send out timekeeping signals over the air. In the United States, this is the WWVB station located in Colorado which is generally receivable anywhere in the US but can be hard to hear on the East Coast. That’s why [JonMackey], who lives in northern New Hampshire, built this WWVB simulator.

Normally, clocks built to synchronize with the WWVB station include a small radio antenna to receive the 60 kHz signal and the 1-bit-per-second data transmission which is then decoded and used to update the time shown on the clock. Most of these clocks have internal (but much less precise) timekeeping circuitry to keep themselves going if they lose this signal, but [JonMackey] can go several days without his clocks hearing it. To make up for that he built a small transmitter that generates the proper timekeeping code for his clocks. The system is based on an STM32 which receives its time from GPS and broadcasts it on the correct frequency so that these clocks can get updates.

The small radio transmitter is built using one of the pins on the STM32 using PWM to get its frequency exactly at 60 kHz, which then can have the data modulated onto it. The radiating area is much less than a meter, so this isn’t likely to upset any neighbors, NIST, or the FCC, and the clocks need to be right beside it to update. Part of the reason why range is so limited is that very low frequency (VLF) radios typically require enormous antennas to be useful, so if you want to listen to more than timekeeping standards you’ll need a little bit of gear.

Inside A Rubidium Frequency Standard

We think of crystals as the gold standard of frequency generation. However, if you want real precision, you need something either better than a crystal or something that will correct for tiny errors — often called disciplining the oscillator. [W3AXL] picked up a rubidium reference oscillator on eBay at a low cost, and he shows us how it works in the video you can see below. He started with a GPS-disciplined oscillator he had built earlier and planned to convert it to discipline from the rubidium clock.

The connector looks like a D-shell connector superficially, but it has a coax connector in addition to the usual pins. The device did work on initial powerup, and using a lissajous pattern to compare the existing oscillator with the new device worked well.

Continue reading “Inside A Rubidium Frequency Standard”

Move Over Cesium Clock, Optical Clocks Are Taking Over

We normally think of atomic clocks as the gold standard in timekeeping. The very definition of a second — in modern times, at least — is 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of a stationary cesium-133 atom at a temperature of 0K. But there is a move to replace that definition using optical clocks that are 100 times more accurate than a standard atomic clock.

In recent news, the Boulder Atomic Clock Optical Network — otherwise known as BACON — compared times from three optical clocks and found that the times differed a little more than they had predicted, but the clocks were still amazingly accurate relative to each other. Some of the links used optical fibers, a method used before. But there were also links carried by lasers aimed from one facility to another. The lasers, however didn’t work during a snowstorm, but when they did work the results were comparable to the optical fiber method.

Continue reading “Move Over Cesium Clock, Optical Clocks Are Taking Over”

Cesium Clock Teardown, Or Quantum Physics Playground

Half the fun of getting vintage test equipment is getting to open it up. Maybe that’s even more than half of the fun. [CuriousMarc] got an HP 5061A Cesium clock, a somewhat famous instrument as the model that attempted to prove the theory of relativity. The reason? The clock was really the first that could easily be moved around, including being put on an airplane. You can watch the video below.

According to the video, you can simplify special relativity to saying that time slows down if you go fast — that is known as time dilation. General relativity indicates that time slows down with increasing gravity. Therefore, using airborne Cesium clocks, you could fly a clock in circles high up or fly at high speeds and check Einstein’s predictions.
Continue reading “Cesium Clock Teardown, Or Quantum Physics Playground”

Keeping Clocks On Time, The Swiss Way

Could there be a worse fate for a guy with a Swiss accent than to be subjected to a clock that’s seconds or even – horrors! – minutes off the correct time? Indeed not, which is why [The Guy With the Swiss Accent] went to great lengths to keep his IKEA radio-controlled clock on track.

For those who haven’t seen any of [Andreas Spiess]’ YouTube videos, you’ll know that he pokes a bit of fun at Swiss stereotypes such as precision and punctuality. But really, having a clock that’s supposed to synchronize to one of the many longwave radio atomic clocks sprinkled around the globe and yet fails to do so is irksome to even the least chrono-obsessive personality. His IKEA clock is supposed to read signals from station DCF77 in Germany, but even the sensitive receivers in such clocks can be defeated by subterranean locales such as [Andreas]’ shop. His solution was to provide a local version of DCF77 using a Raspberry Pi and code that sends modulated time signals to a GPIO pin. The pin is connected to a ferrite rod antenna, which of course means that the Pi is being turned into a radio transmitter and hence is probably violating the law. But as [Andreas] points out, if the power is kept low enough, the emissions will only ever be received by nearby clocks.

With his clock now safely synced to an NTP server via the tiny radio station, [Andreas] can get back to work on his other projects, such as work-hardening copper wire for antennas with a Harley, or a nuclear apocalypse-Tweeting Geiger counter.

Continue reading “Keeping Clocks On Time, The Swiss Way”

Rubidium Disciplined Real Time Clock

[Cameron Meredith] starts the Hackaday.io page for one of his projects by quoting a Hackaday write-up: “A timepiece is rather a rite of passage in the world of hardware hacking“. We stand by that assertion, but we’d say most of the clocks we feature aren’t as capable as his project. He’s made a real-time-clock module controlled by a rubidium frequency standard, and since it also includes a GPS clock he can track local time dilation effects by comparing the two.

Surplus rubidium standards are readily available, but each description of one seems to feature a lot of old-fashioned hardware hacking simply to get it working. This one is no exception, an unusual connector had to be replaced and an extra power supply module attached. Once those modifications had been made and a suitable heatsink had been attached, he was able to bring the rubidium standard, an RTC module, and GPS module together with an ATMega32U4 miniature Arduino-compatible board and an LCD display. The firmware is functional, but he admits it is not finished.

All the project’s files can be found on the Hackaday.io page linked above. Future plans include also monitoring the NIST WWVB radio time signal from Fort Collins, Colorado, for an extra time dilation comparison.

We’ve featured innumerable clocks over the years here at Hackaday, but among them have been a few based upon atomic standards. More than one has been used as a lab reference standard, but most similar to this build is [Max Carters] experiments to check the accuracy of an atomic standard, also using the WWVB transmissions.

Denver Mini Maker Faire: Fun With Pinball

[Mark Gibson] probably has nothing against silicon. He just knows that a lot that can be done with simple switches, relays, and solenoids and wants to share that knowledge with the world. This was made abundantly clear to me during repeat visits to his expansive booth at Denver Mini Maker Faire last weekend.

In the sunlight-filled atrium of the Museum of Nature and Science, [Mark] sat behind several long tables covered with his creations made from mid-century pinball machines. There are about two dozen pieces in his interactive exhibit, which made its debut at the first-ever Northern Colorado Maker Faire in 2013. [Mark] was motivated to build these boards because he wanted to get people interested in the way things work through interaction and discovery of pinball mechanisms.

fun with pinball thumbMost of the pieces he has built are single units and simple systems from pinball machines—flippers, chime units, targets, bumpers, and so on—that he affixed to wooden boards so that people can explore them without breaking anything. All of the units are operated using large and inviting push buttons that have been screwed down tight. Each of the systems also has a display card with an engineering drawing of the mechanism and a short explanation of how it works.

[Mark] also brought some of the original games he has created by combining several systems from different machines, like a horse derby and a baseball game. Both of these were built with education in mind; all of the guts including the original fabric-wrapped wires are prominently displayed. The derby game wasn’t working, but I managed to load the bases and get a grand slam in the baseball game. Probably couldn’t do that again in a million summers.

fun with pinball baseball game
Take me out to the Maker Faire! Click to embiggen.

About five years ago, we covered [Mark]’s build of an atomic clock from pinball machine parts. It’s about time we featured his work again. We have shared a lot of pinball-related builds over the years from the immersive to the gigantic to the dankest of the dank.