Image by [Makestreme] via Hackaday.IO[Makestreme] recently started creating YouTube videos, but wasn’t pressing Save often enough. Couple that with editing software that crashes, and the result is hours of lost work.
Just like you’d expect, pressing the floppy icon triggers Ctrl-S when connected over USB-C. Internally, it’s a Seeeduino Xiao, a push button, and some wires.
The floppy disk itself is made of foam board, and everything is encased in a picture frame. If you want to make one for yourself, [Makestreme] has some great instructions over on IO.
[Jeremy Weatherford] clearly has a knack for explaining projects well enough for easy reproduction but goes way further than most and has created a four-part YouTube series detailing every step from project inception to the final assembly, covering all aspects of 3D modelling and PCB design for a custom MacroPad design. Many tools are introduced along the way, all of which help reduce complexity and, by extension, the scope for errors. As every beginner hacker knows, early successes breed confidence and make for better and more ambitious projects.
Part 1 covers the project motivation and scope and introduces a keyboard layout editor tool. This tool allows one to take a layout idea and generate a JSON file, which is then used to drive keyboard tools. XYZ to produce a usable KiCAD project. The tool only generates a PCB project and an associated netlist file. No schematic is created; you don’t need one for a simple layout.
A very basic keyboard layout
Part 2 is a walkthrough of the design process in KiCAD, culminating in ordering the PCB from JLCPCB and assembling the surface-mount parts. This particular design uses a controller based on the Sea-Picro RP2040 module, but there are many options if you have other preferences. [Jeremy] shows what’s possible with the selected suppliers, but you need not follow this step precisely if you have other ideas or want to use someone local.
Part 3 covers exporting the mechanical aspects of the PCB out of KiCAD and into a 3D CAD program, specifically OnShape. [Jeremy] covers some crucial details, such as how to read the mechanical drawing of the keys to work out where to place the top plate. It’s very easy to plough straight in at this stage and make a design which cannot be assembled! The plan is to use a simple laser-cut box with a bottom plate with mounting holes lining up with those on the PCB. A Top plate is created by taking the outline of the PCB and adding a little margin. An array of rectangular cutouts are designed for the keys to protrude, lining up perfectly with where the keys would be when mounted on the PCB below. The sides of the case are formed from laser-cut sections that lock into each other and the laser-cut base—using the laser joint feature-script addon tool from the OnShape community channel. A second feature script addon is used to auto-layout the laser-cut components onto a single sheet. A CAM application called Kiri Moto is used to export for laser cutting and is available on the OnShape store.
Want to give prospective employers a business card that doesn’t immediately get tossed? Of course you do. If you’re one of us, the answer is obvious: make it some kind of a PCB.
Image by [Ricardo Daniel de Paula] via Hackaday.IOBut as those become commonplace, it’s imperative that you make it do something. Well, you could do a lot worse than giving someone a fully-functioning capacitive-touch keyboard to carry around.
[Ricardo Daniel de Paula] initially chose the CH32V303 microcontroller because it has native USB 2.0 and 16 capacitive touch channels, which can support up to 48 keys via multiplexing.
But in order to reduce costs, [Ricardo] switched to the CH582M, which does all that plus Bluetooth communication. The goal is to have an affordable design for a unique, functioning business card, and I would say that this project has it in spades.
We love to watch your projects grow as much as you do. Really, we’re like proud grandparents around here. So it’s great to see that [Mac Cody] is back with the KanaChord Plus Keyboard, which supports an astounding 6,165 Kanji as well as 6,240 of the most common Japanese words that contain Kanji. This is all in addition to supporting the Kana characters, which make up the rest of Japanese writing (more on that in a minute).
If you need to input Japanese, this is a dream come true. If you’re trying to learn Japanese in the first place, this could be exactly what you need to become fluent.
Whether you have full use of your hands or not, a foot-operated keyboard is a great addition to any setup. Of course, it has to be a lot more robust than your average finger-operated keyboard, so building a keyboard into an existing footstool is a great idea.
When [Wingletang]’s regular plastic footrest finally gave up the ghost and split in twain, they ordered a stronger replacement with a little rear compartment meant to hold the foot switches used by those typing from dictation. Settling upon modifiers like Ctrl, Alt, and Shift, they went about designing a keyboard based on the ATmega32U4, which does HID communication natively.
For the switches, [Wingletang] used the stomp switches typically found in guitar pedals, along with toppers to make them more comfortable and increase the surface area. Rather than drilling through the top of the compartment to accommodate the switches, [Wingletang] decided to 3D print a new one so they could include circuit board mounting pillars and a bit of wire management. Honestly, it looks great with the black side rails.
Image by [nibbler] via Toxic AntidoteAs [nibbler] points out, what really constitutes a win? Set the bar too low and it won’t feel like one at all. Too high, and you may become too discouraged to cross the finish line. With that in mind, [nibbler] set the bar differently, limiting themselves to what could be done in the one day per week they have to devote time to electronic matters.
One-day turnaround usually means using parts on hand and limiting oneself to already-learned skills and techniques. No problem for [nibbler], who, armed with an Arduino Leonardo Tiny and a some colorful push buttons, set about designing a suitable enclosure, and then putting it all together. Was this a win? [nibbler] says yes, and so do I.
We love LEGO, we love keyboards, and when the two join forces, we’re usually looking at a versatile peripheral that’s practically indestructible. Such seems to be the case with [joshmarinacci]’s LEGO-compatible 3D-printed plate for a three-key macro pad. For a first foray into scratch-built keyboard construction, we think this is pretty great.
The idea here is threefold: the plate holds the switches in place, negates the need for a PCB, and makes it possible to build the case completely out of LEGO. In fact, [joshmarinacci]’s plan for the keycaps even includes LEGO — they are going to 3D print little adapters that fit the key switch’s stem on one side, and the underside of a 2×2 plate on the other.
Although [joshmarinacci]’s plan is to design a PCB for the next version, there is plenty to be said for combining the plate and the PCB by printing guides for the wires, which we’ve seen before. We’ve also seen LEGO used to create a keyboard stand that fits just right.