Pi Zero Power Optimization Leaves No Stone Unturned

If you’ve ever designed a battery-powered device with a Pi Zero, you have no doubt looked into decreasing its power consumption. Generic advice, like disabling the HDMI interface and the onboard LED, is omnipresent, but [Manawyrm] from [Kittenlabs] goes beyond the surface-level, and gifts us an extensive write-up where every recommendation is backed with measurements. Armed with the Nordic Power Profiler kit and an SD card mux for quick experimentation, she aimed at two factors, boot time and power consumed while booting, and made sure to get all the debug information we could use.

Thanks to fast experimentation cycles and immediate feedback, we learn plenty of new things about what a Pi Zero does and when, and how we can tame various power-hungry aspects of its behavior. Disabling the GPU or its aspects like HDMI output, tweaking features like HAT and other peripheral probing, and even tactical overclocking during boot – it’s an extensive look at what makes a Pi Zero tick, and no chance for spreading baseless advice or myths.

All in all, this write-up helps you decrease the boot time from twelve seconds to just three seconds, and slash the power budget of the boot process by 80%. Some recommendations are as simple as config.txt entries, while others require you to recompile the kernel. No matter the amount of effort you can put into power optimization, you’ll certainly find things worth learning while following along, and [Manawyrm]’s effort in building her solar-powered Pi setup will help us all build better Pi-Zero-powered solar devices and handhelds.

Voyager 2’s Plasma Spectrometer Turned Off In Power-Saving Measure

The Voyager 2 spacecraft’s energy budget keeps dropping by about 4 Watt/year, as the plutonium in its nuclear power source is steadily dropping as the isotope decays. With 4 Watt of power less to use by its systems per year, the decision was made to disable the plasma spectrometer (PLS) instrument. As also noted by the NASA Voyager 2 team on Twitter, this doesn’t leave the spacecraft completely blind to plasma in the interstellar medium as the plasma wave subsystem (PWS) is still active. The PLS was instrumental in determining in 2018 that Voyager 2 had in fact left the heliosphere and entered interstellar space. The PLS on Voyager 1 had already broken down in 1980 and was turned off in 2007.

After saving the Voyager 1 spacecraft the past months from a dud memory chip and switching between increasingly clogged up thrusters, it was now Voyager 2’s turn for a reminder of the relentless march of time and the encroaching end of the Voyager missions. Currently Voyager 2 still has four active instruments, but by the time the power runs out, they’ll both be limping along with a single instrument, probably somewhere in the 2030s if their incredible luck holds.

This incredible feat was enabled both by the hard work and brilliance of the generations of teams behind the two spacecraft, who keep coming up with new tricks to save power, and the simplicity of the radioisotope generators (RTGs) which keep both Voyagers powered and warm even in the depths of interstellar space.

Supercon 2023: Thea Flowers Renders KiCad Projects On The Web

Last year’s Supercon, we’ve had the pleasure of hosting Thea [Stargirl] Flowers, who told us about her KiCanvas project, with its trials, its tribulations, and its triumphs. KiCanvas brings interactive display of KiCad boards and schematics into your browser, letting you embed your PCB’s information right into your blog post or online documentation.

Give the KiCanvas plugin a URL to your KiCad file, and it will render your file in the browser, fully on the fly. There’s no .jpg to update and re-upload, no jobs to re-run each time you find a mistake and update your board – your files are always up to date, and your audience is always able to check it out without launching KiCad.

Images are an intuitive representation for schematics and PCB files, but they’re letting hackers down massively. Thea’s KiCanvas project is about making our KiCad projects all that more accessible to newcomers, and it’s succeeded – nowadays, you can encounter KiCanvas schematic embeds in the wild on various hackers’ blogs. The Typescript code didn’t write itself, and neither was it easy – she’s brought a fair few war stories to the DesignLab stage.

A hacker’s passion to share can move mountains. Thea’s task was a formidable one, too – KiCad is a monumental project with a decades-long history. There are quite respectable reasons for someone to move this particular mountain – helping you share your projects quickly but extensively, and letting people learn about your projects without breaking a sweat.

Continue reading “Supercon 2023: Thea Flowers Renders KiCad Projects On The Web”

Java Ring: One Wearable To Rule All Authentications

Today, you likely often authenticate or pay for things with a tap, either using a chip in your card, or with your phone, or maybe even with your watch or a Yubikey. Now, imagine doing all these things way back in 1998 with a single wearable device that you could shower or swim with. Sound crazy?

These types of transactions and authentications were more than possible then. In fact, the Java ring and its iButton brethren were poised to take over all kinds of informational handshakes, from unlocking doors and computers to paying for things, sharing medical records, making coffee according to preference, and much more. So, what happened?

Continue reading “Java Ring: One Wearable To Rule All Authentications”

Building A 3D Printed Scanning Tunneling Microscope

YouTuber [MechnicalRedPanda] has recreated a DIY STM hack we covered about ten years ago, updating it to be primarily 3D-printed, using modern electronics, making it much more accessible to many folks. This simple STM setup utilises a piezoelectric actuator constructed by deliberately cutting a piezo speaker into four quadrants. With individual drive wires attached to the four quadrants. [MechPanda] (re)discovered that piezoelectric ceramic materials are not big fans of soldering heat. Still, in the absence of ultrasonic welding equipment, he did manage to get some wires to take to the surface using low-temperature solder paste.

As you can tell, you can only image conductive samples

A makeshift probe holder was glued on the rear side of the speaker actuator, which was intended to take a super sharp needle-like piece of tungsten wire. Putting the wire in tension and cutting at a sharp angle makes it possible with many attempts to get some usable points. Usable, in this instance, means sharp down the atomic level. The sample platform, actuator mount and all the connecting parts are 3D-printed with PA-CF. This is necessary to achieve enough mechanical stability with normal room temperature fluctuations. Three precision screws are used to level the two platforms in a typical kinematic mount structure, which looks like the only hard-to-source component. A geared stepper motor attached to the probe platform is set up to allow the probe to be carefully advanced towards the sample surface. Continue reading “Building A 3D Printed Scanning Tunneling Microscope”

Static Electricity And The Machines That Make It

Static electricity often just seems like an everyday annoyance when a wool sweater crackles as you pull it off, or when a doorknob delivers an unexpected zap. Regardless, the phenomenon is much more fascinating and complex than these simple examples suggest. In fact, static electricity is direct observable evidence of the actions of subatomic particles and the charges they carry.

While zaps from a fuzzy carpet or playground slide are funny, humanity has learned how to harness this naturally occurring force in far more deliberate and intriguing ways. In this article, we’ll dive into some of the most iconic machines that generate static electricity and explore how they work.

Continue reading “Static Electricity And The Machines That Make It”

The Last Sun Sparc Workstation

The truth is, our desktop computers today would have been classed as supercomputers only a few decades ago. There was a time when people who needed real desktop power looked down their noses at anyone with a Mac or a PC with any operating system on it. The workstation crowd used Sun computers. Sun used the Sparc processor, and the machine had specs that are laughable now but were enviable in their day. [RetroBytes] shows off Sun’s final entry in the category, the Ultra 45 from 2007.

Confusingly, the model numbers don’t necessarily increase. The Ultra 80, for example, is an older computer than the 45. Then there were machines like the Ultra 20, 24, 27, and 40 that all used x86 CPUs. A ’45 had one or two UltraSPARC III 64-bit CPUs running at 1.6 GHz and up to a whopping 16 GB of RAM (the one in the video has 8GB). Sure, we see less powerful computers today, but they are usually Chromebooks or very cheap PCs.

The Ultra line started back in 1995 but went underground for a few years with a re-branding. Sun brought the name back in 2005, and the Ultra 45 hit the streets in 2006, only to discontinue the machine in late 2008. According to [RetroBytes], the Sun team knew the Workstation days were numbered and wanted to produce a final awesome workstation. Partially, the reason for sparing few expenses was that anyone who was buying a SPARC workstation in 2006 probably had a reason not to move to cheaper hardware, so you have them over a proverbial barrel.

We liked the CPU cooler, which looked hefty. Honestly, except for the type of CPUs in it, the box could pass itself off as a mid-range desktop tower today with PCI express sockets. The operating system was Sun’s brand of Unix, Solaris, now owned by Oracle.

Sun’s big competitor for a while was Apollo. We’d point out that if all you want is to run Solaris, you don’t need to buy new old hardware.

Continue reading “The Last Sun Sparc Workstation”