Helicopter Seed Robot Can Also Drop Like A Rock

Whether you know them as samara seeds, maple seeds, or helicopter seeds, most of us know the seeds that spin down to the ground on one or two blades. They have been served as the inspiration for several robotic autorotating gliders, and researchers from the Singapore University of Technology and Design (SUTD) can now also make them dive rapidly on command. Video after the break.

In the previous versions, researchers showed that they were able to steer the SAW (Samara Autorotating Wing) by actuating the trailing edge of the blade with a servo. It takes input from an onboard 3-axis magnetometer and GPS, and adjusts the control surface continuously depending on its orientation to make it fly in the chosen direction. The latest paper (PDF) focuses on the craft’s new ability to switch from autorotation to a rapid dive and back to autorotation. Named the dSAW (diving SAW), it can drop like a rock by changing the control surface angle to almost 90° the wing to stall it. It exits the dive by simply moving the control surface back to the normal autorotation position. The kinetic energy built up during the dive is converted to rotational energy very quickly, which slows its vertical velocity to almost zero for an instant before settling back into its normal glide.

We can certainly see this being useful where the dSAW needs to quickly lose altitude to avoid being pushed off-course by the wind. The video below demonstrates this by dropping three dSAWs from an RC airplane. On command, they spread out, each in its designated direction, and then repeatedly switch between dive and autorotation mode as they descend to the ground. The researchers envision this being used to scatter sensor units over a large area in a controlled fashion from a single aircraft. What would you do with this technology? Let us know below. Continue reading “Helicopter Seed Robot Can Also Drop Like A Rock”

Cablecam Is An Exercise In System Integration

Drones have become the standard for moving aerial camera platforms, but another option that sees use in the professional world are cable cameras. As an exercise in integrating mechanics, electronics, and software, [maxipalay] created his own Cablecam.

Cablecam is build around a pair of machined wood plates, with some pulleys and motor reduction gearing between them. A brushless hobby motor moves the platform along the rope/cable, driven a drone ESC. Since the ESC doesn’t have a reverse function, [maxipalay] used four relays controlled by an Arduino to swap around the connections of two of the motor wires to reverse direction. The main onboard controller is a Raspberry Pi, connected to a camera module mounted on a two-axis gimbal for stabilization. A GPS module was also added for positioning information on long cables.

The base station is built around an Nvidia Jetson Nano connected to a 7″ screen mounted in a plastic case. Video, telemetry and control signals are communicated using the open-source Wifibroadcast protocol. This uses off-the-shelf WiFi hardware in connectionless mode to broadcast UDP packets, and avoids the lengthy WiFi reconnection process every time a connection drops out. The motion of Cablecam can be controlled manually using a potentiometer on the control station, or use the machine vision capabilities of the Jetson to automatically track and follow people.

We’ve seen several cable robots over the years, including a solar-powered sensor platform that resembles a sloth.

Create Large Scale Domino Art With A Robot

Creating large domino art displays is a long and nerve-racking process, where bumping a single domino can mean starting from scratch. To automate the process of creating these displays, a team consisting of [Mark Rober], [John Luke], [Josh], and [Alex Baucom] built the Dominator, a robot capable of laying 100 000 dominos just over 24 hours. Video after the break.

[Mark Rober] had been toying with the idea for a few years, and the project finally for off the ground after [Mark] mentioned it in a talk he gave at the 2019 Bay Area Maker Faire. To pull it off, the team created an entire domino laying system, including an automated loading station, a precision indoor positioning system, and the robot itself. The robot is built around a frame of aluminum extrusions, riding on three omnidirectional wheels driven by precision servo motors. A large tray mounted to the front of the robot can hold and release 300 dominos at a time. The primary controller is a Raspberry Pi 4, which receives positioning information from a Marvelmind indoor positioning system and a downward-facing IR camera that looks for reflective markers on the floor. The loading system uses a conveyor system to feed the different colored dominos to an industrial Kuka robot that drops them down a grid of tubes that can hold multiple layers at once.

Continue reading “Create Large Scale Domino Art With A Robot”

Why Make Coffee When You’re Tired? Let A Robot Do It For You

Like us, [Alberto] doesn’t compromise when it comes to a good cup of coffee. We figure that if he went to an office in the Before Times, he was the type of coworker to bring in their own coffee equipment so as not to suffer the office brew. Or perhaps he volunteered to order the office supplies and therefore got to decide for everyone else. Yep, that’s definitely one way to do it.

But like many of us, he is now operating out of a home office. Even so, he’s got better things to do than stand around pouring the perfect cup of coffee every morning. See, that’s where we differ, [Alberto]. But we do love Cafeino, your automated pour-over machine. It’s so sleek and lovely, and we’re sure it does a much better job than we do by hand — although we enjoy doing the pouring ourselves.

Cafeino is designed to mimic the movements of a trained barista’s hand, because evidently you’re supposed to pour the water in slow, deliberate swirls to evenly cover the grounds. (Our kettle has a chunky spout, so we just sort of wing it.) Cafeino does this by pumping water from an electric kettle and pouring a thin stream of it in circles with the help of two servos.

The three buttons each represent a different recipe setting, which specifies the amount of water, the hand pouring pattern, and the resting times between blooming the grounds and actually pouring the bulk of the water. These recipes are set using the accompanying web app via an ESP32, although the main brain barista is an Arduino Nano. Grab a cup and check out the demo after the break.

Got an old but modern coffee robot lying around? You could turn it into a planter with automated watering.

Continue reading “Why Make Coffee When You’re Tired? Let A Robot Do It For You”

Giving Control Of A Smartphone Robot To A Raspberry Pi

Most gadgets that interface with smartphones have a rather short lifespan and inevitably end up as E-waste. Unless hackers give them a second life, as is the case with the Romo, a little smartphone-controlled robot. [David Goeken] has successfully reverse-engineered the communication protocol to allow the Romo to controlled Raspberry Pi (or microcontroller)

The Romo was a little iPhone-controlled robot brought to market with a Kickstarter campaign back in 2013. It originally used the audio jack from the iPhone for the control interface, but was quickly followed by an updated version that used iPhone 4’s 30 pin connector and later the Lightning port. Romotive, the company behind Romo, eventually went out of business, but fortunately, they open-sourced the IOS app and the firmware. This has led to a few third-party apps currently on the app store.

[David] wanted to use other hardware for control, so he set about reverse-engineering the protocol using the open-source software and a logic analyzer. Unsurprisingly, it uses a serial interface to send and receive commands, with two additional pins to detect the connection and wake up the Romo. After breaking out the interface header on the board, he was able to modify the Romo to mount a Raspberry Pi Zero, and power it using the internal battery.

[David] has not made his code public yet, but it sounds like he plans to. It looks like Romo’s can be a fun little experimentation platform, and they can be found for cheap on eBay. We covered another cool Romo hack back in 2014, which used a projector and vision system to create a Mariokart-like game.  For a completely open-source smartphone robot, check out the OpenBot.

A Capable Nerf Launcher Robot

Nerf blasters are fun to play with, and it’s now possible to even get robotic Nerf launchers you can use to chase around your friends. [Engineering After Hours] wasn’t satisfied with the official hardware, though, so built his own remote control Nerf rig to battle it out in the back yard.

The rig is built around an earlier build from [Engineering After Hours], a skid-steer RC chassis that is nice and tough to handle rough and tumble driving. It’s paired with a trailer attached to the center of rotation of the chassis that makes the pair highly maneuverable.

In order to launch rockets, an air tank on the trailer is hooked up to some piping to launch four Nerf rockets. Charged up to just 40 psi, it’s capable of launching the rounds with plenty of power for play purposes. Paired with a elevation control and a servo to trigger the firing valve, it’s a complete system that can shoot on the go.

It’s a fun build that packs a punch, even if it doesn’t quite have the accuracy or range you might desire in an all-conquering Nerf combat platform.  We’d love to see a similar build hooked up to some AI smarts to stalk targets independently of human control. Video after the break.

Continue reading “A Capable Nerf Launcher Robot”

Hackaday Podcast 126: Cable 3D-Scanner, Tesla Charger Robot, Ultrasonic Anemometer, And A Zoetrope

Hackaday editors Elliot Williams and Mike Szczys dive into a week of exceptional hacks. Tip-top of the list has to be the precision measuring instrument that uses a cable spooling mechanism. There’s news that the Starlink base station firmware has been dumped and includes interesting things like geofencing for the developer modes. We saw a garage robot that will plug in your electric vehicle if you’re the forgetful sort. And we close up by talking about heavier-than-air helium airships and China’s Mars rover.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (55 MB or so.)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 126: Cable 3D-Scanner, Tesla Charger Robot, Ultrasonic Anemometer, And A Zoetrope”