Now KDE Users Will Get Easy Virtual Machine Management, Too

If you work with virtual machines, perhaps to spin up a clean OS install for testing, historically you have either bitten the bullet and used one of the commercial options, or spent time getting your hands dirty with something open source. Over recent years that has changed, with the arrival of open source graphical applications for effortless VM usage. We’ve used GNOME Boxes here to make our lives a lot easier.  Now KDE are also joining the party with Karton, a project which will deliver what looks very similar to Boxes in the KDE desktop.

The news comes in a post from Derek Lin, and shows us what work has already been done as well as a roadmap for future work. At the moment it’s in no way production ready and it only works with QEMU, but it can generate new VMs, run them, and capture their screens to a desktop window. Having no wish to join in any Linux desktop holy wars we look forward to seeing this piece of software progress, as it’s a Google Summer Of Code project we hope there will be plenty more to see shortly.

Still using the commercial option? You can move to open source too!

A Brief History Of Fuel Cells

If we asked you to think of a device that converts a chemical reaction into electricity, you’d probably say we were thinking of a battery. That’s true, but there is another device that does this that is both very similar and very different from a battery: the fuel cell.

In a very simple way, you can think of a fuel cell as a battery that consumes the chemicals it uses and allows you to replace those chemicals so that, as long as you have fuel, you can have electricity. However, the truth is a little more complicated than that. Batteries are energy storage devices. They run out when the energy stored in the chemicals runs out. In fact, many batteries can take electricity and reverse the chemical reaction, in effect recharging them. Fuel cells react chemicals to produce electricity. No fuel, no electricity.

Continue reading “A Brief History Of Fuel Cells”

Trashed Sound System Lives To Rock Another Day

Plenty of consumer goods, from passenger vehicles to toys to electronics, get tossed out prematurely for all kinds of reasons. Repairable damage, market trends, planned obsolescence, and bad design can all lead to an early sunset on something that might still have some useful life in it. This was certainly the case for a sound system that [Bill] found — despite a set of good speakers, the poor design of the hardware combined with some damage was enough for the owner to toss it. But [Bill] took up the challenge to get it back in working order again.

Inside the DIY control unit.

The main problem with this unit is that of design. It relies on a remote control to turn it on and operate everything, and if that breaks or is lost, the entire unit won’t even power on. Tracing the remote back to the control board reveals a 15-pin connector, and some other audio sleuths online have a few ways of using this port to control the system without the remote.

[Bill] found a few mistakes that needed to be corrected, and was eventually able to get an ESP8266 (and eventually an ESP32) to control the unit thanks largely to the fact that it communicates using a slightly modified I2C protocol.

There were a few pieces of physical damage to correct, too. First, the AC power cable had been cut off which was simple enough to replace, but [Bill] also found that a power connector inside the unit was loose as well. With that taken care of he has a perfectly functional and remarkably inexpensive sound system ready for movies or music. There are some other options available for getting a set of speakers blasting tunes again as well, like building the amplifier for them from scratch from the get-go.

Wire-frame image of gearbox, setup as a differential

Roller Gearbox Allows For New Angles In Robotics

DIY mechatronics always has some unique challenges when relying on simple tools. 3D printing enables some great abilities but high precision gearboxes are still a difficult problem for many. Answering this problem, [Sergei Mishin] has developed a very interesting gearbox solution based on a research paper looking into simple rollers instead of traditional gears. The unique attributes of the design come from the ability to have a compact angled gearbox similar to a bevel gearbox.

Multiple rollers rest on a simple shaft allowing each roller to have independent rotation. This is important because having a circular crown gear for angled transmission creates different rotation speeds. In [Sergei]’s testing, he found that his example gearbox could withstand 9 Nm with the actual adapter breaking before the gearbox showing decent strength.

Continue reading “Roller Gearbox Allows For New Angles In Robotics”

Jettison Sails For Electric Propulsion

Although there are some ferries and commercial boats that use a multi-hull design, the most recognizable catamarans by far are those used for sailing. They have a number of advantages over monohull boats including higher stability, shallower draft, more deck space, and often less drag. Of course, these advantages aren’t exclusive to sailboats, and plenty of motorized recreational craft are starting to take advantage of this style as well. It’s also fairly straightforward to remove the sails and add powered locomotion as well, as this electric catamaran demonstrates.

Not only is this catamaran electric, but it’s solar powered as well. With the mast removed, the solar panels can be fitted to a canopy which provides 600 watts of power as well as shade to both passengers. The solar panels charge two 12V 100ah LifePo4 batteries and run a pair of motors. That’s another benefit of using a sailing cat as an electric boat platform: the rudders can be removed and a pair of motors installed without any additional drilling in the hulls, and the boat can be steered with differential thrust, although this boat also makes allowances for pointing the motors in different directions as well. 

In addition to a highly polished electric drivetrain, the former sailboat adds some creature comforts as well, replacing the trampoline with a pair of seats and adding an electric hoist to raise and lower the canopy. As energy density goes up and costs come down for solar panels, more and more watercraft are taking advantage of this style of propulsion as well. In the past we’ve seen solar kayaks, solar houseboats, and custom-built catamarans (instead of conversions) as well.

Continue reading “Jettison Sails For Electric Propulsion”

Gene Editing Spiders To Produce Red Fluorescent Silk

Regular vs gene-edited spider silk with a fluorescent gene added. (Credit: Santiago-Rivera et al. 2025, Angewandte Chemie)
Regular vs gene-edited spider silk with a fluorescent gene added. (Credit: Santiago-Rivera et al. 2025, Angewandte Chemie)

Continuing the scientific theme of adding fluorescent proteins to everything that moves, this time spiders found themselves at the pointy end of the CRISPR-Cas9 injection needle. In a study by researchers at the University of Bayreuth, common house spiders (Parasteatoda tepidariorum) had a gene inserted for a red fluorescent protein in addition to having an existing gene for eye development disabled. This was the first time that spiders have been subjected to this kind of gene-editing study, mostly due to how fiddly they are to handle as well as their genome duplication characteristics.

In the research paper in Angewandte Chemie the methods and results are detailed, with the knock-out approach of the sine oculis (C1) gene being tried first as a proof of concept. The CRISPR solution was injected into the ovaries of female spiders, whose offspring then carried the mutation. With clear deficiencies in eye development observable in this offspring, the researchers moved on to adding the red fluorescent protein gene with another CRISPR solution, which targets the major ampullate gland where the silk is produced.

Ultimately, this research serves to demonstrate that it is possible to not only study spiders in more depth these days using tools like CRISPR-Cas9, but also that it is possible to customize and study spider silk production.

Grid overlayed onto a mason jar. Across the grid are high voltage purple coronas.

High Voltage For Extreme Ozone

Don’t you hate it when making your DIY X-ray machine you make an uncomfortable amount of ozone gas? No? Well [Hyperspace Pirate] did, which made him come up with an interesting idea. While creating a high voltage supply for his very own X-ray machine, the high voltage corona discharge produced a very large amount of ozone. However, normally ozone is produced using lower voltage, smaller gaps, and large surface areas. Naturally, this led [Hyperspace Pirate] to investigate if a higher voltage method is effective at producing ozone.

Using a custom 150kV converter, [Hyperspace Pirate] was able to test the large gap method compared to the lower voltage method (dielectric barrier discharge). An ammonia reaction with the ozone allowed our space buccaneer to test which method was able to produce more ozone, as well as some variations of the designs.

Continue reading “High Voltage For Extreme Ozone”