Ask Hackaday: (How) Should We Control Kickstarter Campaigns?

Kickstarter campaigns helped bring new and innovative products to the market during these last years. However there often are failures that can happen at several stages. We’d like to hear your opinion about them and discover what you think could be done to foresee/prevent these kinds of bad experiences that damage the trust between individuals and funding platforms.

Post-funding failures

There are a few project teams that give up a few months after receiving the funds, like the people behind the iControlPad 2 recently (disclaimer: we’re not backers). Even if [Craig] stated that he would document the entire production process on film and be open about all the project life steps, that didn’t prevent the project from being dropped (oddly enough) exactly one year after they received the funds. The more the project was headed towards failure, less was the frequency of updates regarding the project’s current state. The official reasons for this decision were difficulties that arose with the chosen LEDs, we’ll let you make your own opinion by having a look at the updates section. Thanks [Nikropht] for the tipping us about it.

Pre-funding failures

What is happening even more often on kickstarter is (usually successful) campaigns being canceled by the website itself after a few people rang the alarm bell. This may be due to an unfeasible project idea, a fake demonstration video/photos or even an attempt to resell an existing item under a new name.

The best examples for the first category undeniably are free energy generators. Here is an indiegogo campaign which actually succeeded. The creators announced one month ago that the project is running a bit behind schedule (aha), that the machine will cost around $5000 and that they’ll “need the funds before they make the units”. What can be done to educate the public that such energy is not created out of thin air?

The second category includes the recently canceled LUCI advanced lucid dream inducer (thanks [Michael] for the tip), which ended 2 days before the deadline. Technical guys got skeptical when they saw that the electrode signals were amplified several feet from the brain with an audio amplifier. At first glance, this was the only sign that this project may have been a scam (let’s give them the benefit of the doubt). Further research indicated that GXP (the company behind the campaign) didn’t exist, and most of their pictures were photoshopped. Here is a link to a quick summary of the situation and if you want to be entertained we advise you to make some pop-corn and head to the comments section of the project. What’s terrible here is that backers started to turn against each other, as the company always had a ‘good’ explanation for all the backers’ questions.

At last, there are some persons that just make funding campaigns with already existing products. This is the case of the eye3 flying robot and the vybe vibrating bracelet (don’t order!). Note that all of them were successfully funded. The eye3 was created by the same persons that made LumenLab, a company that created the microcnc. You’ll find more details here. The vibrating bracelet was just this one, which would be made in different colors. We just discovered this website that covered both project in greater lengths as well as many others.

Kickstarter fraudsters

Scams can also happen on the backers’ side. Recently, a Kickstarter backer named “Encik Farhan” attempted to rip off many Kickstarter projects. A ‘credit card chargeback’ technique was used, were the backer would contribute to the campaign, receive his perk and later cancel his credit card transaction using diverse reasons. The money would later be taken from the campaign funding by the payment processor.

What can be done?

The examples cited in this article set precedents which may turn people away from crowdfunding. In your opinion, what could be done to prevent this? Another reason we ask is because Hackaday may launch a sponsored product soon, thanks to the new overlords. This hypothetical product would be designed with the Hackaday community in a completely transparent process.

In the meantime, if you find any perpetual motion machines on kicstarter or indiegogo, be sure to send them in. You may also want to checkout this website predicting the success probability of a given kickstarter campaign.

Raspberry Pi Driven 128×32 LED Sign

Looks like a commercial LED display sign… right? Not even close. This is a project of [Jon’s] from over a year ago, and it is a very impressive 128×32 LED display board, driven using a single Raspberry Pi.

It’s made of eight “P10” 32×16 LED panels that he bought off of eBay, housed in a wooden frame he built himself. The display runs off of a single Raspberry Pi and can receive a video signal from anything with an Ethernet port. The individual boards are daisy-chained in a rather odd arrangement to minimize cable length, which [Jon] says helps with clocking the data fast — he’s able to parse 2 bits per pixel to refresh the display at an impressive 400+ frames per second.

To power the display, he’s using a single ATX power supply with the Pi connected to the standby 5V power line. This is to avoid a voltage drop which might cause the Pi to crash — when all LEDs are on the display can draw a healthy 32A of juice. The P10’s use shift registers to serially load the pixel data. At any time, the 4096 pixel display can have 1024 pixels on, which means a fairly fast clock is required to update the display.

[Jon] has shared all the source code on his blog, and has a fairly in-depth explanation of all the systems used. Check it out for yourself, and don’t forget to stick around after the break to see the display in action!

Continue reading “Raspberry Pi Driven 128×32 LED Sign”

View-Master Video Player!

view master 3d video player

[Alec] just sent us this great project he’s been working on. Converting an antique View-Master from the early 50’s into a modern 3D video player, capable of reading Mini-CDs.

Most View-Masters don’t have much space for tinkering, let alone adding a Raspberry Pi, two displays and a CD drive, so [Alec] really lucked out when he found this model — complete with light and D-cell battery pack. Tons of space! He originally looked into getting some cheap digital photo frame LCDs from China, but soon realized the effort involved with making those work just wouldn’t be worth it, so instead he picked up some 0.9″ OLED displays from Adafruit. He still forgot to check if they had drivers for the Raspberry Pi though, and ended up on another detour of modifying FBTFT drivers to make it all work.

After that headache he got to the fun part — cramming all the hardware inside. He picked up a cheap laptop CD drive off of eBay, and discovered that using the 80MM Mini-CD standard, the discs would just fit inside of the View-Master, sticking out just a little bit, kind of like the original photo wheels!

Quite a bit of fiddling later, he managed to assemble the entire thing in layers, without damaging the external shell of the View-Master. Since it is an antique, it was important for him that his hack be reversible — and for the most part, it is! Stick around after the break to see a short video explanation!

Continue reading “View-Master Video Player!”

InFORM The Morphing Table Gets Even More Interactive

inform2

Remember last week’s post on the inFORM, MIT’s morphing table? Well they just released a new video showing off what it can do, and it’s pretty impressive.

The new setup features two separate interfaces, and they’ve added a display  so you can see the person who is manipulating the surface. This springs to life a whole new realm of possibilities for the tactile digital experience. The inFORM also has a projector shining on the surface, which allows the objects shown from the other side to be both visually and physically seen — they use an example of opening a book and displaying its pages on the surface. To track the hand movements they use a plain old Microsoft Kinect, which works extremely well. They also show off the table as a standalone unit, an interactive table — Now all they need to do is make the pixels smaller… 

Stick around after the break to see some more awesome examples of the possibilities of this new tactile-digital interface. There are also some great clips near the end of the video showing off the complex linkage system that makes it all work.

Continue reading “InFORM The Morphing Table Gets Even More Interactive”

Flying RC Toaster

Do you remember that screen saver from the 80’s of flying toasters? Well the guys over at Flite Test just made a real flying toaster.

The first challenge was converting a toaster to run off batteries, which [David] accomplished by splitting the elements in the 110V toaster into 4 segments, and running them off of 6-cell LiPo — when the toaster is on, it draws almost 700W. The next question was — how much of an effect does air flow have on a toaster’s ability to toast? As it turns out, not that much! They tested the system by driving down the street holding a toaster out of the passenger window of the car, and while they got some strange looks, they also successfully toasted the bread.

The next step was making a plane capable of carrying the extra batteries, and a bulky, not-so-aerodynamic toaster. This was probably the easiest part, as they have made a flying 20kg cinder block before. Needless to say, making a toaster capable of flight was not much of a challenge.

Our favorite part of the video is the test flight, where [Josh] wears a POV visor system to, wait for it… watch the bread toasting. Check it out after the break!

Continue reading “Flying RC Toaster”

3D Printering: A Makerbot In Every School Follows The Oregon Trail

printering

Gather ’round, children and I’ll tell you a tale of how everyone from the ages of 16 to 40 has played Oregon Trail.

Back when Apple was just starting out, [The Steves] thought it would be a good idea to get the Apple II into the hands of schoolchildren across the United States. They did this with educational pricing, getting Apple IIs into newly created ‘computer labs’ in schools across the country. These new computers – from my experience, anyway – were used as a replacement for the old Selectric typewriters, and on rare occasions a machine that played the MECC classics like Oregon Trail.

Fortunately, a few students were bright enough and had teachers who were brave enough to allow BASIC programming, PEEKs and POKEs. This was the start of a computer revolution, a time when grade schoolers would learn a computer wasn’t just a glorified word processor or dysentery machine, but something that would do what you told it to do. For those kids, and I’m sure a few of them are reading this, it was a life changing experience.

Now it appears we’re in the midst of a new revolution. If this horribly named column isn’t enough of a clue, I’m talking about 3D printing. Yesterday, Makerbot announced they were going to fill in for Apple in this physical revolution by trying to get a Makerbot into every school in the country.

Continue reading “3D Printering: A Makerbot In Every School Follows The Oregon Trail”

BITX, A Return To Hackers’ Paradise

bitx

[Bill Meara] has finished up his radio. It both looks and sounds great. It was only a few weeks ago that [Bill] posted a guest rant here on Hackaday. The Radio he mentioned building in the rant is now complete. The transceiver itself is a BITX, a 14MHz Single Sideband (SSB) radio designed by Ashhar Farhan VU2ESE. Ashhar designed the BITX as a cheap to build, and easy to tune up transceiver for radio amateurs in India.

By utilizing parts easily sourced from scrapped TV sets, the BITX can be built for less than 300 Indian Rupee – or about $4.70 USD. In [Bill]’s own words, “Five bucks and some sweat equity gets you a device capable of worldwide communication.” He’s not kidding either. [Bill’s] first QSO was with a ham in the Azores Islands of Portugal.

[Bill] built his radio using the “Manhattan” building style, which we’ve seen before. Manhattan style uses rectangular pads glued down onto a copper ground plane. It makes for a more flexible design than regular old dead bug style building. Looking at all those components may be a bit daunting at first, but plenty of support is available. [Bill] has an 18 part build log on the soldersmoke website. There also is an active yahoo group dedicated to the BITX.