$100k To Crack A Bitcoin Wallet

When Bitcoin peaked a few years ago, with single coins reaching around $18,000 USD, heartbreaking stories began circulating about people who had tens or hundreds of coins they mined in the early days when coins were worth just a few dollars or cents. Since then, they owners of these coins had lost the private key, or simply thrown away the drive or computer the coins were on. It’s next to impossible to recover this key in most situations, but for the right amount of money it can sometimes be done.

About 20 years ago, [Mike] was working as a cryptography expert and developed a number of interesting algorithms for breaking various forms of encryption, one of which involved .zip files with poor entropy. A Bitcoin owner stumbled across the paper that [Mike] wrote and realized that it could be a method for recovering his lost key from 2016. [Mike] said it would take a GPU farm and $100,000 USD, but when the owner paid the seemingly enormous price [Mike] was able to recover around $300,000 worth of Bitcoin.

While this might not be financially feasible for you if you have a USB stick with a single coin on it you mined as a curiosity in 2010, the cryptography that is discussed in the blog entry is the real story here. We never know where the solutions to our problems are going to come from, like a random .zip file exploitation from two decades ago, but we can be sure that in the future it will be much easier to crack these keys.

Thanks to [Darmstatium] for the tip!

Safe Cracking With Signal Analysis

[Dave Jones] over at EEVblog got his hands on a small safe with an electronic lock and decided to try his hand at safe cracking. But rather than breaking out the thermal drill or shaped charge, he hooked up his Rigol scope and attempted a safe cracking via signal analysis (YouTube link).

We have to say that safes Down Under seem much stouter than most of the inexpensive lock boxes we’ve seen in the US, at least in terms of the quality (and quantity) of the steel in the body of the safe. Even though [Dave] was looking for a way in through the electronics, he still needed to deal with all that steel to get himself out of a face-palm moment that resulted in a lockout. Once that was out of the way, he proceeded to capture usable signals from the internal microcontroller using the only two available contacts – the 9 volt battery connections. While he did get signals, he couldn’t find any signatures that would help determine the six digits in the PIN, and as he points out, even if he did, brute-forcing through the one million permutations to find the right code would take too long, given the wrong-code lockout feature of the lock.

Even though he failed to hack into this particular safe, there’s still plenty to be learned from his methods. And who’s to say that other similar locks aren’t a little more chatty about their internals? Maybe you could even manage to EMP your way past the lock.

Master Lock Auto-cracker Built As Coursework At University

We love the beginning of May because the final projects for college coursework start rolling into our tips line. Here’s one of the latest, it’s an automatic Master lock combination cracker which was built by [Ross Aiken] and his classmates as part of their ECE453 Embedded Microprocessor System Design class at the University of Wisconsin – Madison.

We’ve talked about the ease with which these locks can be cracked. But [Ross] points out that the resources we linked to before are flawed. To get the combination as quickly as possible the team has implemented an algorithm discussed here. Their machine uses a stepper motor to turn the dial with a big solenoid to pull on the shackle. The system is sensitive enough to detect the “sticky” spots of the lock, which are then used to narrow the number of possible combinations before brute forcing the combination. As you can see in the video after the break, the shackle moves slightly when pulled after an incorrect combination. The long vertical pin near the solenoid will pass through an optical sensor when the correct combination is found.

Do you have your own final project to show off? What are you waiting for, send us a tip about it!

Continue reading “Master Lock Auto-cracker Built As Coursework At University”

GPU Password Cracking Made Easy

The power that a Graphics Processing Unit presents can be harnessed to do some dirty work when trying to crack passwords. [Vijay] took a look at some of the options out there for cracking passwords and found that utilizing the GPU produces the correct password in a fraction of the time. On a Windows machine he pitted the Cain password recovery tool which uses the CPU for its calculations against ighashgpu which uses ATI or Nvidia graphics cards to do the deed. Hands down ighashgpu is the fastest; with Cain taking about one year to crack an eight character password while ighashgpu can do it in under nineteen hours.

We were very interested to see how easy it is to use this package. We looked in on GPU cracking in September but didn’t focus on the software packages that are out there. Now that you know how easily your password can be unearthed perhaps you will get some use out of this article discussing the usability and security of longer passwords which we ran across over on Reddit.

Cracking A Manipulation-proof, Million Combination Safe

So you spent the big bucks and got that fancy safe but if these guys can build a robot to brute-force the combination you can bet there are thieves out there who can pull it off too. [Kyle Vogt] mentioned that we featured the first iteration of his build back in 2006 but we can’t find that article. So read through his build log linked above and then check out the video of the new version after the break. It’s cracking the combination on a Sargent and Greenleaf 8500 lock. There’s an interesting set of motions necessary to open the safe. Turn the dial four revolutions to the first number, three revolutions to the second, two revolutions to the final number, then one revolution to zero the dial. After that you need to press the dial inward to activate the lever assembly. Finally, rotate the dial to 85 to retract the bolt which unlocks the safe.

The propaganda on this lock says it stood up to 20-hours of manual manipulation. But [Kyle] thinks his hardware can get it open in a few hours. His hardware looks extremely well-engineered and we’d bet some creative math can narrow down the time it takes to brute force the combo by not going in sequence.

Continue reading “Cracking A Manipulation-proof, Million Combination Safe”

An Interesting Take On WEP Cracking

[Ben Kurtz] is doing a little WEP cracking but in a bit of a different way than we’re used to. WEP cracking makes us think of war driving; driving around with your laptop open, looking for WiFi access points, and stopping to run some software when you find them. [Ben’s] way is similar but different in one key way, he’s using an iPhone as the frontend.

This started as a way to find a use for some leftover equipment. He threw together a Linux box and loaded up Aircrack-ng, the software we often see used in penetration testing. To remove himself from shady-looking activities in public he coded a web interface using the Python package Turbogears. It uses screen, a program often used with SSH to run services concurrently in different terminals, with the option to disconnect without stopping the processes. Now it’s just a matter of parking the hardware near an AP, and doing the work in a browser on your mobile device. You can check out the script he wrote, as well as installation instructions, in his post linked above.

[Thanks Tech B.]

[Note: Banner image not directly related to this post]

GPU Processing And Password Cracking

Recently, research students at Georgia Tech released a report outlining the dangers that GPUs pose to the current state of password security. There are a number of ways to crack a password, all with their different pros and cons, but when it comes down to it, the limiting factor in all of these methods is processing complexity. The more operations that need to be run, the longer it takes, and the less useful each tool is for cracking passwords. In the past, most recommendations for password security revolved around making sure your password wasn’t something predictable, such as “password” or your birthday. With today’s (and tomorrows) GPUs, this may no longer be enough.

Continue reading “GPU Processing And Password Cracking”