Antique Electromechanical Calculating Machines

electromechanical calculator Hamann 505

The decision to use electronics for our calculating machines has long been decided.  However, that doesn’t mean that mechanical engineers didn’t put up a valiant, if ultimately futile, fight. [Dvice.com] has an interesting article comparing the calculating technology of the 1960s, such as the [Haman 505], to today’s iPad.

This comparison and pictures were made possible by [Mark Glusker]’s excellent collection.  These models can be divided into two categories, rotary calculators, and printing calculators. According to [Mark]‘s site, the printing calculators stayed on the market a few years after the rotary calculators, which were off the market by 1970.

Although we may never see machines like these made again, anyone even a little bit mechanically inclined would be hard pressed not to be inspired by this collection. Be sure to check out the video of a [Madas 20BTG] calculator after the break to see what one of the rotary models looks like in action! Continue reading “Antique Electromechanical Calculating Machines”

Make Your Own Atomic Clock

We see plenty of clock projects come through, but usually it is their visual or mechanical design that stands out. The DCF-77 LED PIC clock is fun because it is synchronized with the Atomic clock in Braunschweig Germany. The clock picks up the radio signal at 77.5 KHz known as DCF77, and that’s where it got its name.

The circuit looks surprisingly simple and usually costs less than $30 to build, depending on how you piece it together. You can download the schematics and code from the site, but you may have to do a little research about how to catch the signal from your location. The person who wrote this was located in Europe.

[found via HackedGadgets]

Following Faces With OpenCV And Arduino

[youtube=http://www.youtube.com/watch?v=lD4uFD7j0AU&w=470]

[Marco] has had some fun with OpenCV in the area of face tracking. Using an older laser project, he has cobbled together a system that will track a face and put a laser on it. While he is just using this as a proof of concept, it goes without saying that you probably shouldn’t mount a laser on a face tracker. However, stuffing this into a myKeepon wouldn’t be a horrible thing.

[Marco] shares the process of getting the OpenCV bit working in this writeup, you’ll have to refer back to his laser gun project for the physical build.

 

[via Adafruit]

 

Burning Plasma Screen With Breathtaking Beauty

image

At some point you’ve got to resign yourself to the fact that the TV you’ve been trying to resurrect is just not salvageable. But if you’re knowlegable about working safely with high voltage, you might get quite a show out of it yet. Here [Aussie50] finds beauty in destruction when he fries a large plasma panel from a broken HDTV.

The flyback transformer from a microwave oven drives the display. The video after the break starts off kind of boring at first but before long it takes off. As portions of the display burn out the electric arcs jumping those gaps provide a thrilling view for the remainder of the 14 minutes.

Don’t want to commit to a video that long? Here’s a display that gives up the ghost after just four and a half minutes but we don’t think it’s quite as cool.

Continue reading “Burning Plasma Screen With Breathtaking Beauty”

SMDuino Helps Arduino Fit Into Tight Places

[Adam] was tired of plopping the same components over and over into his Arduino-based designs. He spent part of his weekend laying out a small board that would host everything he needed and could be built as a single component for all future projects. Above you can see the project he calls SMDuino, an Arduino clone that can be used as a surface mount part.

The contacts on four sides of the board break out the pins. They’ve been designed with 0.1″ pitch which means they will work with standard pin headers. But since they’re plated through from top to bottom they are easy to solder to surface mount pads as well. The project is open source, so you can order your own boards (he used DorkBot PDX) or email him if you want to get in on a pre-order. That is for unpopulated PCBs only. But there’s few components used here so it’s pretty inexpensive to throw together. You’ll need four caps, four resistors, a crystal, an LED, the ATmega*8 of your choice (an ATmega328 is used here), and a low dropout regulator. Of course it is possible to go without the crystal oscillator.

Does this remind anyone else of the Basic Stamp 2?

Adding Speech Control To An Old Robotic Arm

[Joris Laurenssen] has been hanging onto this robotic arm for about twenty years. His most recent project uses some familiar tools to add voice control for each of the arm’s joints.

The arm has its own controller which connects via a DB-25 port. [Joris’] first task was to figure out what type of commands are being sent through the connection. He did some testing to establish the levels of the signals, then hooked up his Arduino and had it read out the values coming through the standard parallel connection. This let him quickly establish the simple ASCII character syntax used to command movement from the device. There’s only eight command sets, and it didn’t take much work to whip up a sketch that can now drive the device.

The second portion of the project is to use voice commands to push these parallel signals to the arm. Instead of reinventing the wheel he decided to use the speech recognition feature of his Android phone. He used Scripting Layer for Android (SL4A) and a Python script to interpret commands, push them to his computer via Telnet, and finally drive the arm. We’ve embedded the video demo after the break. He gives the commands in Dutch but he overlaid comments in English so you can tell what’s going on.

Continue reading “Adding Speech Control To An Old Robotic Arm”

Cardboard Framed Tricopter

Talk about reducing the costs of a build, this tricopter uses cardboard as a frame and has one less motor than its quadcopter relatives. There are almost no details other than those shared in the video after the break so we’re just going to guess based on what we see (feel free to share your own insight in the comments).

The smooth curves of this integrated landing pad makes us thing the frame was cut either with a CNC device or a utility-knife wielding ninja. Two of the three motor supports look just like what is shown above, but the third has a hinged mounting bracket attached to a servo motor. This way the propeller can be tilted around an axis running parallel to the support arm. We’d bet this feature is mainly for adjusting the yaw of the aircraft.

The video comments mention that this can hover when the throttle is at 45%, showing that there’s a lot lift available when needed. That is until you really weigh it down by adding plastic cages around the propellers. It’s kind of neat to see the thing ‘sticking’ to the ceiling at the end of that clip by driving the throttle wide open and using the cages as top-sided landing gear.

Continue reading “Cardboard Framed Tricopter”