Radio Apocalypse: America’s Doomsday Rocket Radios

Even in the early days of the Cold War, it quickly became apparent that simply having hundreds or even thousands of nuclear weapons would never be a sufficient deterrent to atomic attack. For nuclear weapons to be anything other than expensive ornaments, they have to be part of an engineered system that guarantees that they’ll work when they’re called upon to do so, and only then. And more importantly, your adversaries need to know that you’ve made every effort to make sure they go boom, and that they can’t interfere with that process.

In practical terms, nuclear deterrence is all about redundancy. There can be no single point of failure anywhere along the nuclear chain of command, and every system has to have a backup with multiple backups. That’s true inside every component of the system, from the warheads that form the sharp point of the spear to the systems that control and command those weapons, and especially in the systems that relay the orders that will send the missiles and bombers on their way.

When the fateful decision to push the button is made, Cold War planners had to ensure that the message got through. Even though they had a continent-wide system of radios and telephone lines that stitched together every missile launch facility and bomber base at their disposal, planners knew how fragile all that infrastructure could be, especially during a nuclear exchange. When the message absolutely, positively has to get through, you need a way to get above all that destruction, and so they came up with the Emergency Rocket Communication System, or ERCS.

Continue reading “Radio Apocalypse: America’s Doomsday Rocket Radios”

Finding A New Model For Hacker Camps

A nicht scene in a post-apocalyptic future, in this case an electronics bazaar adjacent to the rave area in EMF 2018 Null Sector.
Electromagnetic Field manage to get live music at a hacker camp right, by turning it into the most cyberpunk future possible.

A couple of decades ago now, several things happened which gave life to our world and made it what it has become. Hackerspaces proliferated, giving what was previously dispersed a physical focus. Alongside that a range of hardware gave new expression to our projects; among them the Arduino, affordable 3D printing, and mail-order printed circuit boards.

The result was a flowering of creativity and of a community we’d never had before.Visiting another city could come with a while spent in their hackerspace, and from that new-found community blossomed a fresh wave of events. The older hacker camps expanded and morphed in character to become more exciting showcases for our expression, and new events sprang up alongside them. The 2010s provided me and my friends with some of the most formative experiences of our lives, and we’re guessing that among those of you reading this piece will be plenty who also found their people.

And then came COVID. Something that sticks in my mind when thinking about the COVID pandemic is a British news pundit from March 2020 saying that nothing would be quite the same as before once the pandemic was over. In our community this came home to me after 2022, when the first large European hacker camps made a return. They were awesome in their own way, but somehow sterile, it was as though something was missing. Since then we’ve had a few more summers spent trailing across the continent to hang out and drink Club-Mate in the sun, and while we commend the respective orgas for creating some great experiences, finding that spark can still be elusive. Hanging out with some of my friends round a European hackerspace barbecue before we headed home recently, we tried to put our finger on exactly where the problem lay.

Continue reading “Finding A New Model For Hacker Camps”

Ask Hackaday: Where Are All The Fuel Cells?

Given all the incredible technology developed or improved during the Apollo program, it’s impossible to pick out just one piece of hardware that made humanity’s first crewed landing on another celestial body possible. But if you had to make a list of the top ten most important pieces of gear stacked on top of the Saturn V back in 1969, the fuel cell would have to place pretty high up there.

Apollo fuel cell. Credit: James Humphreys

Smaller and lighter than batteries of the era, each of the three alkaline fuel cells (AFCs) used in the Apollo Service Module could produce up to 2,300 watts of power when fed liquid hydrogen and liquid oxygen, the latter of which the spacecraft needed to bring along anyway for its life support system. The best part was, as a byproduct of the reaction, the fuel cells produced drinkable water.

The AFC was about as perfectly suited to human spaceflight as you could get, so when NASA was designing the Space Shuttle a few years later, it’s no surprise that they decided to make them the vehicle’s primary electrical power source. While each Orbiter did have backup batteries for emergency purposes, the fuel cells were responsible for powering the vehicle from a few minutes before launch all the way to landing. There was no Plan B. If an issue came up with the fuel cells, the mission would be cut short and the crew would head back home — an event that actually did happen a few times during the Shuttle’s 30 year career.

This might seem like an incredible amount of faith for NASA to put into such a new technology, but in reality, fuel cells weren’t really all that new even then. The space agency first tested their suitability for crewed spacecraft during the later Gemini missions in 1965, and Francis Thomas Bacon developed the core technology all the way back in 1932.

So one has to ask…if fuel cell technology is nearly 100 years old, and was reliable and capable enough to send astronauts to the Moon back in 1960s, why don’t we see them used more today?

Continue reading “Ask Hackaday: Where Are All The Fuel Cells?”

Death Of The Cheque: Australia Moves On

Check (or cheques) have long been a standard way for moving money from one bank account to another. They’re essentially little more than a codified document that puts the necessary information in a standard format to ease processing by all parties involved in a given transaction.

The check was once a routine, if tedious, way for the average person to pay for things like bills, rent, or even groceries. As their relevance continues to wane in the face of newer technology, though, the Australian government is making a plan to phase them out for good.

Continue reading “Death Of The Cheque: Australia Moves On”

How To Sink A Ship: Preparing The SS United States For Its Final Journey

When we last brought you word of the SS United States, the future of the storied vessel was unclear. Since 1996, the 990 foot (302 meter) ship — the largest ocean liner ever to be constructed in the United States — had been wasting away at Pier 82 in Philadelphia. While the SS United States Conservancy was formed in 2009 to support the ship financially and attempt to redevelop it into a tourist attraction, their limited funding meant little could be done to restore or even maintain it. In January of 2024, frustrated by the lack of progress, the owners of the pier took the Conservancy to court and began the process of evicting the once-great liner.

SS United States docked at Pier 82 in Philadelphia

It was hoped that a last-minute investor might appear, allowing the Conservancy to move the ship to a new home. But unfortunately, the only offer that came in wasn’t quite what fans of the vessel had in mind: Florida’s Okaloosa County offered $1 million to purchase the ship so they could sink it and turn it into the world’s largest artificial reef.

The Conservancy originally considered it a contingency offer, stating that they would only accept it if no other options to save the ship presented themselves. But by October of 2024, with time running out, they accepted Okaloosa’s offer as a more preferable fate for the United States than being scrapped.

It at least means the ship will remain intact — acting not only as an important refuge for aquatic life, but as a destination for recreational divers for decades to come. The Conservancy has also announced plans to open a museum in Okaloosa, where artifacts from the ship will be on display.

Continue reading “How To Sink A Ship: Preparing The SS United States For Its Final Journey”

The Terminal Demise Of Consumer Electronics Through Subscription Services

Open any consumer electronics catalog from around the 1980s to the early 2000s and you are overwhelmed by a smörgåsbord of devices, covering any audio-visual and similar entertainment and hobby needs one might have. Depending on the era you can find the camcorders, point-and-shoot film and digital cameras right next to portable music players, cellphones, HiFi sets and tower components, televisions and devices like DVD players and VCRs, all of them in a dizzying amount of brands, shapes and colors that are sure to fit anyone’s needs, desires and budget.

When by the late 2000s cellphones began to absorb more and more of the features of these devices alongside much improved cellular Internet access, these newly minted ‘smartphones’ were hailed as a technological revolution that combined so many consumer electronics into a single device. Unlike the relatively niche feature phones, smartphones absolutely took off.

Fast-forward more than a decade and the same catalogs now feature black rectangles identified respectively as smart phones, smart TVs and tablets, alongside evenly colored geometric shapes that identify as smart speakers and other devices. While previously the onus for this change was laid by this author primarily on the death of industrial design, the elephant in the room would seem to be that consumer electronics are suffering from a terminal disease: subscription services.

Continue reading “The Terminal Demise Of Consumer Electronics Through Subscription Services”

Gentle Processing Makes Better Rubber That Cracks Less

Rubber! It starts out as a goopy material harvested from special trees, and is then processed into a resilient, flexible material used for innumerable important purposes. In the vast majority of applications, rubber is prized for its elasticity, which eventually goes away with repeated stress cycles, exposure to heat, and time. When a rubber part starts to show cracks, it’s generally time to replace it.

Researchers at Harvard have now found a way to potentially increase rubber’s ability to withstand cracking. The paper, published in Nature Sustainability, outlines how the material can be treated to provide far greater durability and toughness.

Continue reading “Gentle Processing Makes Better Rubber That Cracks Less”