Too Smooth: Football And The “KnuckleBall” Problem

Picture a football (soccer ball) in your head and you probably see the cartoon ideal—a roughly spherical shape made with polygonal patches that are sewn together, usually in a familiar pattern of black and white. A great many balls were made along these lines for a great many decades.

Eventually, though, technology moved on. Footballs got rounder, smoother, and more colorful. This was seen as a good thing, with each new international competition bringing shiny new designs with ever-greater performance. That was, until things went too far, and the new balls changed the game. Thus was borne the “knuckleball” phenomenon.

Continue reading “Too Smooth: Football And The “KnuckleBall” Problem”

Tech In Plain Sight: Magsafe, And How To Roll Your Own

Apple likes magnets. They started out with magnetic laptop chargers and then graduated to a system that magnetically holds the phone, charges it, and can facilitate communication between the phone and a charger or other device. Even if you are like me and have no Apple devices, you can retrofit other phones to use Magsafe accessories. In fact, with a little work, you can build your own devices. Regardless, the technology is a clever and simple hack, and we are just a little sorry we didn’t think of it.

Terms

Using a magnet to attach a phone isn’t a new idea. But, historically, the phone had either a metal back or an adhesive metal plate attached that would stick to the magnet. This wouldn’t necessarily help with charging, but was perfectly fine for holding the device. The problem is, it is hard to wirelessly charge the phone through the metal.

Magsafe can do several different things. Obviously, it can attach the phone magnetically. However, since it is a ring shape, you can still have a charging coil in the middle of the ring. Better still, the Magsafe system will align the phone and charger with a satisfying click when you put them together.

Continue reading “Tech In Plain Sight: Magsafe, And How To Roll Your Own”

The Importance Of Current Balancing With Multi-Wire Power Inputs

In an ideal world, devoid of pesky details like contact resistance and manufacturing imperfections, you would be able to double the current that can be provided to a device by doubling the number of conductors without altering the device’s circuitry, as each conductor would carry the exact same amount of current as its neighbors. Since we do not actually live inside a simplified physics question’s scenario, multi-wire powering of devices comes with a range of headaches, succinctly summarized in the well-known rule that electricity always seeks the path of least resistance.

As recently shown by NVidia with their newly released RTX 50-series graphics cards, failure to provide current balancing between said different conductors will quickly turn it into a practical physics demonstration of this rule. Initially pinned down as an issue with the new-ish 12VHPWR connector that was supposed to replace the 6-pin and 8-pin PCIe power connectors, it turns out that a lack of current balancing is plaguing NVidia GPUs, with predictably melty results when combined with low safety margins.

So what exactly changed that caused what seems to be a new problem, and why do you want multi-wire, multi-phase current balancing in your life when pumping hundreds of watts through copper wiring inside your PC?

Continue reading “The Importance Of Current Balancing With Multi-Wire Power Inputs”

Be Careful What You Ask For: Voice Control

We get it. We also watched Star Trek and thought how cool it would be to talk to our computer. From Kirk setting a self-destruct sequence, to Scotty talking into a mouse, or Picard ordering Earl Grey, we intuitively know that talking to a computer is better than typing, right? Well, computers talking back and forth to us is no longer science fiction, and maybe we aren’t as happy about it as we thought we’d be.

We weren’t able to pinpoint the first talking computer in fiction. Asimov and van Vogt had talking computers in the 1940s. “I, Robot” by Eando Binder, and not the more famous Asimov story, had a fully speaking robot in 1939. You could argue that “The Machine” in E. M. Forster’s “The Machine Stops” was probably speaking — the text is a little vague — and that was in 1909. The robot from Metropolis (1927) spoke after transforming, but you could argue that doesn’t count.

Meanwhile, In Real Life

In real life, computers weren’t as quick to speak. Before the middle of the twentieth century, machine-generated speech was an oddity. In 1779, a mechanical contrivance by Wolfgang von Kempelen, famous for the mechanical Turk chess-playing automaton, could form simple words. By 1939, Bell Labs could do even better speech synthesis electronically but with a human operator. It didn’t sound very good, as you can see in the video below, but it was certainly expressive.

Continue reading “Be Careful What You Ask For: Voice Control”

Hackaday Europe 2025: Speakers, Lightning Talks, And More!

If you’ve been waiting for news from our upcoming Hackaday Europe event in March, wait no longer. We’re excited to announce the first slice of our wonderful speakers lineup! Get your tickets now,

Hackaday Europe is going down again in Berlin this year on March 15th and 16th at MotionLab. It’s Hackaday, but in real life, and it’s too much fun.  The badge is off-the-scale cool, powered by the incredible creativity of our community who entered the Supercon SAO contest last fall, and we’re absolutely stoked to be tossing the four winning entries into your schwag bag in Europe.

If you already know you’ll be attending and would like to give a seven-minute Lightning Talk on Sunday, we’re also opening up the call for talks there. Tell us now what you’d like to talk about so we can all hear it on Sunday morning.

We’re looking forward to the talks and to seeing you all there! We’re getting the last few speakers ironed out, have a keynote talk to announce, and, of course, will open up workshop signups. So stay tuned! Continue reading “Hackaday Europe 2025: Speakers, Lightning Talks, And More!”

The “Unbreakable” Beer Glasses Of East Germany

We like drinking out of glass. In many ways, it’s an ideal material for the job. It’s hard-wearing, and inert in most respects. It doesn’t interact with the beverages you put in it, and it’s easy to clean. The only problem is that it’s rather easy to break. Despite its major weakness, glass still reigns supreme over plastic and metal alternatives.

But what if you could make glassware that didn’t break? Surely, that would be a supreme product that would quickly take over the entire market. As it turns out, an East German glassworks developed just that. Only, the product didn’t survive, and we lumber on with easily-shattered glasses to this day. This is the story of Superfest.

Continue reading “The “Unbreakable” Beer Glasses Of East Germany”

NASA Taps Webb To Help Study 2032 Asteroid Threat

In all likelihood, asteroid 2024 YR4 will slip silently past the Earth. Based on the data we have so far, there’s an estimated chance of only 2.1% to 2.3% that it will collide with the planet on December 22nd, 2032. Under normal circumstances, if somebody told you there was a roughly 98% chance of something not happening, you probably wouldn’t give it a second thought. There’s certainly a case to be made that you should feel that way in regards to this particular event — frankly, it’s a lot more likely that some other terrible thing is going to happen to you in the next eight years than it is an asteroid is going to ruin your Christmas party.

That being said, when you consider the scale of the cosmos, a 2+% chance of getting hit is enough to raise some eyebrows. After all, it’s the highest likelihood of an asteroid impact that we’re currently aware of. It’s also troubling that the number has only gone up as further observations of 2024 YR4’s orbit have been made; a few weeks ago, the impact probability was just 1%. Accordingly, NASA has recently announced they’ll be making time in the James Webb Space Telescope’s busy scientific schedule to observe the asteroid next month.

So keeping in mind that we’re still talking about an event that’s statistically unlikely to actually occur, let’s take a look at what we know about 2024 YR4, and how further study and analysis can give us a better idea of what kind of threat we’re dealing with.

Continue reading “NASA Taps Webb To Help Study 2032 Asteroid Threat”