Taking A Peek Inside The Newest Echo Show 10

When Amazon released the original Echo, it was a pretty simple affair. Cylinder, some LEDs on top, done. Then they came out with the Echo Dot, which was basically the same thing, but shorter. It seemed like there was a pretty clear theme for awhile, but then at some point Amazon decided it would be a good idea to start producing Echo devices in every form factor imaginable, from wall plugs to literal sunglasses, and things got a lot more complicated. As a perfect example, take a look at this teardown of the third generation Echo Show 10 by [txyzinfo].

Granted the base still looks a bit like the Echos of old, but the family resemblance stops there. As you can probably gather from the name, the Show features a high resolution 10.1 inch LCD panel, greatly improving the number and type of advertisements Amazon is able to force on the user. In true Black Mirror fashion, there’s even a brushless motor in the base that allows the machine to rotate the display towards the user no matter how hard they try to escape.

A salvageable part if there ever was one.

The teardown is presented with no commentary; in both the video below and on the Hackaday.IO page, all you’ll find are clear and well-lit images of the device’s internals. But for those who are just interested in what the inside of one of these $250 USD gadgets looks like, that’s all you really need.

At this point, it doesn’t seem like [txyzinfo] is trying to reverse engineer the Show or figure out how it all works, and looking at the complexity of that main board, we’re not surprised. Still, it’s a marvel to look at all the hardware they packed into such a relatively small device.

If you’re looking for a more technical examination at the newer Echo devices, [Brian Dorey] did some impressive poking around on the third generation Dot in 2019 and [electronupdate] went as far as decapping a few of the chips inside the Flex. On the software side of things, check out the recent efforts to craft an open source firmware for the original Echo.

Continue reading “Taking A Peek Inside The Newest Echo Show 10”

Custom Built 12-Port A/V Switch Keeps CRT Well Fed

Classic gaming aficionados who prefer to play on real hardware know the struggle of getting their decades-old consoles connected to a modern TV. Which is why many gamers chose to keep a contemporary CRT TV around for when they want to take a walk down memory lane. Unfortunately those old TVs usually didn’t offer more than a few A/V ports on the back, so you’ll probably need to invest in a A/V switch to keep them all hooked up at once.

That’s the situation [Thomas Sowell] found himself in, except he couldn’t find one with enough ports. Rather than chain switches together, he decided to build his own custom 12-port console selector. With an integrated amplifier to keep everything looking sharp, a handsome walnut and metal enclosure, and a slick graphical interface that shows the logo of the currently selected console on a Vacuum Fluorescent Display (VFD), the final product is a classic gamer’s dream come true.

A peek under the hood.

To switch the audio [Thomas] is using a pair of ADG1606 16-channel analog multiplexers, while video is shuffled around with four MAX4315 8-channel video multiplexer-amplifiers. The math might seem a bit off at first, but he’s using one ADG1606 for each stereo channel and since the switch is for S-Video, each device has a luminance and color signal that needs to be handled separately. The multiplexers are flipped with a ATmega2561 microcontroller, which is also responsible for reading user input from a rotary encoder on the front of the case and displaying the appropriate console logo on the 140×32 Noritake VFD.

You may be surprised to find that [Thomas] considered himself an electronics beginner when he started this project, and that this is only the second PCB he’s ever designed. Was this a bold second project? Sure. But it also speaks to how far DIY electronics has come over the last years. Powerful open source tools, modular components, and of course a community of creative folks willing to share their knowledge and designs, has gone a long way towards redefining whats possible for the individual hacker and maker.

Continue reading “Custom Built 12-Port A/V Switch Keeps CRT Well Fed”

A Hi-Fi Speaker From Some Foil And Magnets

In the world of speakers, mass is the enemy of high frequency response. In order to get the crispest highs, some audiophiles swear by speakers in which the moving element is just a thin ribbon of metal foil. As the first step towards building a set of ribbon headphones, [JGJMatt] has designed a compact ribbon speaker made from aluminum foil.

A 3D-printed body holds six permanent magnets, which produce the static magnetic field necessary for the speaker to work. The sound itself is produced by a corrugated aluminum diaphragm made by taking a strip of foil and creasing it with a gear. Aluminum is difficult to solder, so electrical contact is made with a couple of short segments of copper tape. A little Blu Tack and glue hold it all together, and the result is stunning in its simplicity.

Check out the video after the break to hear how it sounds. If you want to try this yourself, it’s important to remember that ribbon speakers have very low input impedances (0.1 Ω for this design), so in order to prevent damage to your amplifier, a transformer or series resistor must be used to bring the impedance up to the 4-8 Ω your amplifier expects.

[JGJMatt] is no newcomer to exotic speaker technology—check out these thin distributed-mode loudspeakers they made! If you’re more interested in recording music than playing it, you might want to read about how a metal ribbon suspended in a magnetic field is used to make incredible microphones. Shout out to [Itay] for the tip. Continue reading “A Hi-Fi Speaker From Some Foil And Magnets”

RIP Lou Ottens, Developer Of The Compact Cassette And More

It’s with sadness that we note the passing at the age of 94 of the long-time Phillips engineer Lou Ottens, who is best known as the originator of the Compact Cassette audio tape format that was so ubiquitous through the later decades of the 20th century. Whether you remember cassettes as the format for 8-bit software, for teenage mixtapes on a Walkman, they began life at his hands in the early 1960s at the Phillips factory in Hasselt, Belgium.

Through a long career with the Dutch electronics company, he was responsible either directly or in part for a string of consumer electronic devices that we would see as ubiquitous over the latter half of the century. Before the cassette he had developed the company’s first portable reel-to-reel tape recorder, and in the 1970s while technical director of their audio division he led the team that would develop the CD. He was reported as saying that his great regret was not beating Sony to the development of the miniature cassette player that would be sold as the Walkman, but we’d suggest that the Walkman would not have been possible without the cassette in the first place.

So next time you handle a cassette tape, spare a thought for Lou, an audio engineer whose work permeated so much of the last half-century.

Thanks [Carl] for the tip.

Images: Lou Ottens by Jordi Huisman CC BY-SA 4.0 and “An early Phillips cassette recorder” by mib18 CC BY-SA 3.0

 

IKEA Shelf Becomes Kid Friendly MP3 Player

IKEA’s flatpack furniture has long been popular among makers for its modular nature and low cost, making it ideal for whacky experiments and custom builds. [Claus] is one such person, and built a fun MP3 player for his kids out of a basic LACK shelf.

The music is handled by an NodeMCU ESP8266, working in concert with a VS1053 audio board. The VS1053 is a highly capable chip, capable of decoding a variety of raw and compressed audio formats as well as MIDI, but here it’s used to read SD cards and play MP3s. An RC522 is used to read RFID cards to trigger various tracks, allowing kids to choose a song by simply placing a tag on the shelf. A cheap PAM8302 amplifier and speaker are used to output the music. All the hardware is installed neatly inside the LACK shelf, an easy job thanks to the primarily cardboard construction.

RFID cards are more fun than we normally give them credit for, and we’ve seen a few builds along similar lines to this one. Video of [Claus’s] child rocking out after the break.

Continue reading “IKEA Shelf Becomes Kid Friendly MP3 Player”

Adding Remote Control To An Old Stereo

Sometimes, the best hifi gear is the gear you’ve already got. This is particularly the case in the cassette world, as high quality decks are long out of production. [Nick] liked his current rig, but wanted to be able to use it with a remote from across the room. Naturally, he set to hacking the feature in.

The cassette deck in question, a Yamaha K-220, was old enough to lack a remote, but thankfully new enough to use a computer-controlled tape transport. This meant that the basic features of play, stop, rewind and fast forward can all be controlled with simple digital buttons rather than mechanical ones. This made it easy to interface an ATmega328P to the stereo’s original circuitry. Digital IO pins are hooked up to the buttons, held as high-impedance inputs most of the time, only toggling to ground when necessary to trigger a button press. It was then a simple job to hook up an IR receiver to the chip and program it with some Arduino libraries to work with a typical stereo remote control [Nick] had laying around.

It’s a tidy build, and with more cool cassette releases coming out every year, we’re sure [Nick]’s going to put some miles on the setup. If you find IR too cumbersome though, you can go a step further and replace it with a web app instead. If you’ve been tinkering with similar things in your own workshop, be sure to drop us a line!

Listening To Long Forgotten Voices: An Optical Audio Decoder For 16 Mm Film

Like many of us, [Emily] found herself on COVID-19 lockdown over the summer. To make the most of her time in isolation, she put together an optical audio decoder for old 16 mm film, built using modern components and a bit of 3D printing.

It all started with a broken 16 mm projector that [Emily] got from a friend. After repairing and testing the projector with a roll of film bought at a flea market, she discovered that the film contained an audio track that her projector couldn’t play. The audio track is encoded as a translucent strip with varying width, and when a mask with a narrow slit is placed over the top it modulates the amount of light that can pass through to a light sensor connected to speakers via an amplifier.

[Emily] used a pair of razor blades mounted to a 3D printed bracket to create the mask, and a TI OPT101 light sensor together with a light source to decode the optical signal. She tried to use a photoresistor and a discrete photodiode, but neither had the required sensitivity. She built a frame with adjustable positions for an idler pulley and the optical reader unit, an electronics box on one end for the electronic components, and another pulley attached to a stepper motor to cycle a short loop of the film.

Most of the projects we see involving film these days are for creating digital copies. You can digitize your old 35 mm photo film using a Raspberry Pi, some Lego pieces, and a DSLR camera, or do the same for 8 mm film with a 3D printed rig. Continue reading “Listening To Long Forgotten Voices: An Optical Audio Decoder For 16 Mm Film”