thermostat

Arduino Thermostat Includes Vacation Mode

When [William’s] thermostat died, he wanted an upgrade. He found a few off-the-shelf Internet enabled thermostats, but they were all very expensive. He knew he could build his own for a fraction of the cost.

The primary unit synchronizes it’s time using NTP. This automatically keeps things up to date and in sync with daylight savings time. There is also a backup real-time clock chip in case the Internet connection is lost. The unit can be controlled via the physical control panel, or via a web interface. The system includes a nifty “vacation mode” that will set the temperature to a cool 60 degrees Fahrenheit while you are away. It will then automatically adjust the temperature to something more comfortable before you return home.

[William’s] home is split into three heat zones. Each zone has its own control panel including an LCD display and simple controls. The zones can be individually configured from either their own control panel or from the central panel. The panels include a DHT22 temperature and humidity sensor, an LCD display, a keypad, and support electronics. This project was clearly well thought out, and includes a host of other small features to make it easy to use.

DRM Protection Removed For… Coffee?

Keurig, the manufacturer of a single-serve coffee brewing system, has a very wide following amongst coffee drinkers. Their K-cup (pre-packaged coffee grounds with a coffee filter, all in a plastic container) is an interesting concept and makes brewing a single cup of coffee much more efficient over making a whole pot. Their newer line of coffee makers, the Keurig 2.0, has some interesting (and annoying) security features though, which [Kate Gray] has found an interesting and simple way around.

The DRM security in these coffee makers is intended to keep third-party “cups” from being used in the Keurig. It can recognize an authentic Keurig cup, and can stop the operation of the coffee pot if a knockoff is placed in the machine. We can only assume that this is because Keurig makes a heap of cash by selling its canisters of coffee. One simple solution was already covered a few days ago by taping an authentic lid to the machine. This one doesn’t require any authentic pods but just removes one wire from a wiring harness inside of the case.

There are other ways around the security on these devices, but when [Kate Gray] actually investigated, she found the security decidedly lacking. With something this simple, one can only speculate how much Keurig has really invested in making sure users don’t use third-party cups of coffee in their machines, but it also brings up the classic question of who really owns hardware if we can’t use it in the way we want, rather than the way the manufacturer wants.

You can read more about the project on its Reddit page. Thanks to [MyOwnDemon] for the tip!

Chicken_Feed_Indicator

DIY Chicken Feed Indicator Tells You When To Feed The Chickens

While prepping for the upcoming apocalypse, the [prepforshtf] folks had time to design and build an automatic chicken feeder. It’s a very simple design (the best kind) that is made from standard PVC drain pipe. The pipe is positioned vertically and filled with chicken feed. A T-joint at the bottom of the pipe allows chickens to access the food inside. As food is eaten away, gravity pulls more food down to the feeding area.

That sounds pretty straight forward but it quickly became clear that checking the food level was a chore, almost as much as just feeding the chickens everyday. To remedy the requirement to constantly check the food level, the automatic feeder system was taken apart and modified to include a level indicator. Now, inside the 4-inch pipe resides a plate that resembles a butterfly valve.

This plate doesn’t control the flow of feed like a normal butterfly valve would, the feed actually holds the plate in a vertical position until the feed level drops below the plate. Since the plate has a heavier side, it will rotate when the feed no longer holds it in position. A large red pointer was attached to the plate’s axle and, since it is on the outside of the feeder, it allows a clear indication that the feeder needs a refill.

This is a great project that shows that even simple projects can be very beneficial in everyday life. With no electronics or batteries to fail, this feed indicator will certainly be very reliable. No doubt the chickens will be happy. Check this out for a more involved electricity-powered feeder.

EPROM Coffee Table

Either in need of a coffee table or suffering a severe lack of upscaled electronics, [Darren] just finished up a great build for his living room. It’s a huge, scaled up version of a UV erasable EPROM with an infinity mirror in place of the fused quartz window.

[Darren]’s coffee table was inspired by an earlier build by the geniuses at Evil Mad Scientist. A few years ago, they built a 555 footstool that was scaled up about 30 times its normal size. Even at footstool scale, the 555 is still relatively tiny.

[Darren] is using a similar construction technique by forming the legs of the EPROM out of laminated plywood. Since this build is significantly larger, building the entire device out of solid, laminated plywood would result in an unwieldy and expensive piece of furniture. Instead, [Darren] constructed the legs and sides out of plywood laminations, covering the ends, top, and bottom with plywood panels. The result is a hollow EPROM/coffee table that’s still structurally sound.

If you’re a bit confused after counting the number of pins on the coffee table, you’re in good company. This is technically a scaled-up version of a 16-pin 0.600″ PDIP, something that a quick googling suggest isn’t historically accurate. Maybe there was an EPROM with a 4-bit wide data bus somewhere in the annals of electronics history, but we’re happy with saying that a completely accurate scaled-up ROM would be far too big for [Darren]’s living room.

Continue reading “EPROM Coffee Table”

An MSP430-based Automatic Fish Feeder

[Dmitri] wanted to buy an automatic feeding setup for his aquarium, but he found that most off-the-shelf feeders are really inaccurate with portion control. [Dmitri]’s fish is sensitive to overfeeding, so an off-the-shelf feeder wouldn’t get the job done. Since [Dmitri] knows a thing or two about electronics, he set out to build his own microcontroller-based automatic feeding machine.

[Dmitri]’s machine is based around a MSP430 that starts feeding at scheduled times and controls how much food is dispensed. The MSP lives on a custom PCB that [Dmitri] designed, which includes a stepper motor driver and input for an endstop sensor. The board is wired to a stepper motor that advances a small wooden board with a series of holes in it. Each hole is filled with a single serving of food. The board slides along a piece of U-channel, and food drops out of each hole into the aquarium when the hole reaches the end of the channel.

The whole build is very well documented, and [Dmitri] explains each block of his schematic in detail. His firmware is also open-source, so you can build your own fish feeder based off of his design. Check out the video after the break to see the feeder in action.

Continue reading “An MSP430-based Automatic Fish Feeder”

Chinese Temperature/Humidity Sensor Is Easily Hacked

There’s a new piece of electronics from China on the market now: the USR-HTW Wireless Temperature and Humidity Sensor. The device connects over Wi-Fi and serves up a webpage where the user can view various climate statistics. [Tristan] obtained one of these devices and cracked open the data stream, revealing that this sensor is easily manipulated to do his bidding.

Once the device is connected, it sends an 11-byte data stream a few times a minute on port 8899 which can be easily intercepted. [Tristan] likes the device due to the relative ease at which he could decode information, and his project log is very detailed about how he went about doing this. He notes that the antenna could easily be replaced as well, just in case the device needs increased range.

There are many great reasons a device like this would be useful, such as using it as a remote sensor (or in an array of sensors) for a homemade thermostat, or a greenhouse, or in any number of other applications. The sky’s the limit!

A Wooden LED Matrix Coffee Table

[johannes] writes in with a pretty impressive LED table he built. The table is based around WS2801 serially addressable LEDs which are controlled by a Raspberry Pi. The Pi serves up a node.js-driven web interface developed by [Andrew Munsell] for a room lighting setup. The web interface controls the pattern shown on the display and the animation speed.

[johannes] built a wooden coffee table around the LED matrix, which includes a matte glass top to help diffuse the lighting. An outlet to plug in a laptop and two USB charging ports are panel-mounted on the side of the enclosure, which are a nice touch. The power supply for the LEDs is also inside the enclosure, eliminating the need for an external power brick.

While [johannes] hasn’t written any software of his own yet, he plans on adding music synchronization and visualizations for weather and other data. Check out the video after the break to see the table in action.

Continue reading “A Wooden LED Matrix Coffee Table”