Let The Solder Scroll Take Care Of Your Feed Needs

[Victor]’s nifty tool the Solder Scroll is a handheld device that lets one feed solder out simply by turning something a little like a scroll wheel. It looks like an intuitive and comfortable design that can adapt to a wide variety of solder thicknesses, and is entirely 3D printed.

One part we particularly like is the feed system. One rolls a wheel which feeds solder out using a mechanism a lot like extrusion gears in many 3D printer hot ends. Both wheels have ridged surfaces that grip and feed the solder; their gears mesh with one another so that moving one moves both in unison.

Solder feed tools like this have seen all kinds of interesting designs, because while the problem is the same for everyone, there are all kinds of different ways to go about addressing it. We love this one, and we have seen many other takes that range from a powered, glove-mounted unit to an extremely simple tool with no moving parts. We’ve even seen a method of hacking a mechanical pencil into a new role as a solder feeder.

Hackaday Prize 2023: One-Handed Soldering With The Solder Sustainer

For a lot of us, soldering has become so ingrained that it’s muscle memory. We know exactly when the iron is hot enough, how long to leave the tip in contact with the joint to heat it up, and exactly where to dab in the solder to get it to flow. When you’re well-practiced it can be a beautiful thing, but for those who don’t do it frequently, soldering can be frustrating indeed.

The “Solder Sustainer” looks like it just might be aimed at solving that problem, as well as a few others. It comes to us from [RoboticWorx], and while it looks a little like the love child of a MIG welder and a tattoo machine, it’s got a lot going for it. The idea is to make soldering a one-handed task by combining the soldering iron and a solder wire feeder into one compact package. The solder feeder is very reminiscent of a filament extruder on a 3D printer, using a stepper to drive spring-loaded pinch wheels, which forces the solder down a curved 3D-printed tube that directs it toward the tip. The pancake stepper is driven by an ESP32, which also supports the touch sensor that lets you advance the solder. The whole thing can be powered off a USB-C power supply, or using the onboard USB charger that can be connected in line with the soldering iron supply.

The video below shows Solder Sustainer in use. Yes, we know — some of those joints look a little iffy. But that seems to have more to do with technique than with the automatic solder feed. And really, in situations where you’ve previously wished for a third hand while soldering, this would probably be just the thing.

The Solder Sustainer is an entry in the “Gearing Up” round of the 2023 Hackaday Prize. If you’ve got an idea for a tool, jig, fixture, or instrument that makes hacking easier, we want to know about it. But you’d better hurry — the round ends on August 8.

Continue reading “Hackaday Prize 2023: One-Handed Soldering With The Solder Sustainer”

Cat Feeder Depends On RFID To Keep The Peace At Dinnertime

Anyone with more than one cat can tell you that the joy mischief they bring into your life is much more than twice that of a single cat. And if those felines have different dietary needs, you can end up where [Benjamin Krejci] found himself, which resulted in this fancy RFID cat feeder.

For a little backstory, [Ben]’s furry friends [Luna] and [Fermi] have vastly different eating styles, with the former being a grazer and the latter more of a “disordered eater,” to put it politely. [Fermi] tends to eat until she vomits, which is fun, and muscles her pickier sister away from the bowl if there’s anything left in it. [Ben]’s idea was to leverage [Luna]’s existing RFID chip, which he figured would be a breeze. But the vet-inserted chip is designed to be read by a high-power reader directly in contact with the cat’s skin, which made reliably reading the chip a challenge.

Several round of design iteration resulted in the current configuration, with a large antenna coil poised above and behind the food dispenser. [Luna] has no choice but to put the back of her neck and shoulder blades almost directly in contact with the coil, which makes it easier to read the 134.2-kHz chip with a long-distance RFID module. If [Luna]’s chip is found, the lid on the food bowl opens gently and quietly, so as not to spook the mild-mannered cat. The lid stays open as long as [Luna] is in place thanks to some IR sensors, but as soon as she backs out, the lid comes down to keep [Fermi] from gorging herself.

Hats off to [Ben] for working through the problem and coming up with what looks like a fine solution. We suppose he could have tried something easier like weighing the two cats to distinguish between them, but this seems like a cleaner solution to us.

Printable, Castable Feeders Simplify Pick-and-Place Component Management

It goes without saying that we love to see all the clever ways people have come up with to populate their printed circuit boards, especially the automated solutions. The idea of manually picking and placing nearly-microscopic components is reason enough to add a pick and place to the shop, but that usually leaves the problem of feeding components to the imagination of the user. And this mass-production-ready passive component feeder is a great example of that kind of imagination.

Almost every design we’ve seen for homebrew PnP component feeders have one of two things in common: they’re 3D-printed, or they’re somewhat complex. Not that those are bad things, but they do raise issues. Printing enough feeders for even a moderately large project would take forever, and the more motors and sensors a feeder has, the greater the chance of a breakdown. [dining-philosopher] solved both these problems with a simple design using only two parts, which can be resin cast. A lever arm is depressed by a plunger that’s attached to the LitePlacer tool, offset just enough so that the suction cup is lined up with the component location on the tape. A pawl in the lower arm moves forward when the tool leaves after picking up the part, engaging with the tape sprocket holes and advancing to the next component.

[dining-philosopher] didn’t attack the cover film peeling problem in his version, choosing to peel it off manually and use a weight to keep it taut and expose the next component. But in a nice example of collaboration, [Jed Smith] added an automatic film peeler to the original design. It complicates things a bit, but the peeler is powered by the advancing tape, so it’s probably worth it.

Continue reading “Printable, Castable Feeders Simplify Pick-and-Place Component Management”

A Ploopy Pick And Place

A fair number of hackers reach that awkward age in their careers – too old for manual pick and place, but too young for a full-fledged PnP machine. The obvious solution is to build your own PnP, which can be as simple as putting a suction cup on the Z-axis of an old 3D-printer. Feeding parts into the pick and place, though, can be a thorny problem.

Or not, if you think your way through it like [Phil Lam] did and build these semi-automated SMD tape feeders. Built for 8-mm plastic or paper tapes, the feeders are 3D-printed assemblies that fit into a rack that’s just inside the work envelope of a pick and place machine. Each feeder has a slot in the top for the tape, which is advanced by using the Z-axis of the PnP to depress a lever on the front of the case. A long tongue in the tape slot gradually peels back the tape’s cover to expose a part, which is then picked up by the PnP suction cup. Any machine should work; [Phil] uses his with a LitePlacer. We like the idea that parts stay protected until they’re needed; the satisfyingly clicky lever action is pretty cool too. See it briefly in action in the video below.

It looks like [Phil] built this in support of his popular Ploopy trackball, which is available both as a kit and fully assembled. We think the feeder design is great whether you’re using PnP or not, although here’s a simpler cassette design for purely manual SMD work.

Continue reading “A Ploopy Pick And Place”

A Simple Auger Pet Feeder

Pet feeders are a popular maker project. One can speculate that this shows the great self-confidence common to the maker set, who are willing to trust their own work to keep their animal companions alive for many days at a a time. [Darren Tarbard] is one such maker, who put together this simple auger build.

The project consists of a hopper for dry pet food, into which a screw auger is inserted. Both parts are 3D printed, making them easy to produce at home for the average maker. The build was designed specifically around the parts [Darren] had to hand, namely a 28BYJ-48 stepper motor, which is charged with turning the auger. Running the show is an Arduino, which can be run with whatever suitable timing code is necessary to feed the particular pet in question. There’s also a remixed version that adds a larger food storage dish on top for longer periods of unattended operation, created by [szuchid].

It’s a basic build, but one that would be readily achievable by most makers with little more than some junkbox components and a roll of filament. Of course, if your pet prefers wet food, you might need a different design. Video after the break.

Continue reading “A Simple Auger Pet Feeder”

This Arduino Is Feeding The Fishes

Fish are easy to keep as pets, requiring little more than regular feeding to keep them happy in the short-to-medium term. If you’re going on holiday, it can be nice to know that your pets are being taken care of, but finding someone to take on the chore can be hard. [Trevor_DIY] doesn’t need to worry about that, however – he’s built an automatic feeder to handle the job.

The build uses an Arduino Uno as the brains, with the only additional hardware required being a stepper motor and driver. The stepper motor drives a 3D printed wheel, with 14 slots – each one holding one meal for the fish. This allows the feeder to deliver two meals a day for a full week before requiring attention.

The feeder is configured to feed a breakfast meal, then a dinner meal 8 hours later, and then wait 16 hours before breakfast comes around again. Rather than use a real-time clock, this is simply handled with the Arduino’s built in delay function. While it isn’t super accurate, this should be close enough over a week to keep the fish alive. We’d be interested as to just how far it drifts over time.

Overall, it’s a quick and tidy way to keep the pets going without a lot of fuss. Pet feeders are a popular project, as they solve a common problem faced by owners the world over; this one can even handle wet cat food. Video after the break.

Continue reading “This Arduino Is Feeding The Fishes”