Interview With A Printer

The Hackaday European tour continues, this time in Prague with Josef Průša (Google translate), core developer in the RepRap project, feature at all the Maker Faires and cons, and creator of his namesake, the Prusa Mendel and i3 printers.

[Prusa]’s involvement with the RepRap project started with a RepRap Mendel, the second iteration of RepRap hardware, but the first popular and easy to build version. [Jo] found the Mendel rather difficult to build, so he loaded OpenSCAD and started to design his own version of the hardware. This version became the de facto standard RepRap for a few years, with many inspired by and derivative printers making their way to hackerspaces and workshops around the world.

The first Prusa printer, derived from the RepRap Mendel.
The first Prusa printer, derived from the RepRap Mendel.

A few years ago, [Prusa] was one of the first to make a complete break with the traditional ‘threaded rod and nut’ construction of RepRaps with the introduction of the Prusa i3. This was the first model that had a metal plate as the frame, another feature that would be seen in dozens of other models. It’s not something that was without controversy, either; using a metal plate for the frame doesn’t allow for as much self-replication, something that’s a core value of the RepRap project. That didn’t matter to the community; the Prusa i3 or a similar design is the third most popular printer on 3Dhubs.

The first Prusa printer showing off its Makerbot heritage
The first Prusa printer showing off its Makerbot heritage

What’s the future of the Prusa name? There is an i4 in the works, and I’m pretty sure that’s all I can tell you. Someone already bought the Prusai4 domain, so there may be a name change.

In the interview below, [Prusa] goes over his involvement with the RepRap project, his business, what he considers to be the latest advances in 3D printing for the past year, what the worst things about the 3D printing scene is (it’s Kickstarter), the state of the RepRap project, and thoughts on SLS, DLP, and SLA printing technologies. Video below.

Continue reading “Interview With A Printer”

Hackaday Prize Finalist: An Un-noodly Spectrometer

And so we come to the final finalist bio for The Hackaday Prize. In only three days, we’ll know whether [fl@C@]’s RamanPi Spectrometer or one of the four other projects to make it into the finals round will be making it to space, or only Japan.

There are a surprising number of spectrometer projects out there on the Intertubes, but most of these setups only measure the absorption spectrum – literally what wavelengths of light are absorbed by the material being measured. A Raman spectrometer is completely different, using a laser to illuminate the sample, and measuring the scattering of light from the material. It’s work that has won a Nobel prize, and [fl@C@] built one with a 3D printer.

Bio below, along with the final video that was sent around to the judges. If you’re wondering who the winner of The Hackaday Prize is, even I don’t know. [Mike] and a few Hackaday overlords do, but the rest of us will remain in ignorance until we announce the winner at the party we’re having in Munich next Thursday.

Continue reading “Hackaday Prize Finalist: An Un-noodly Spectrometer”

Hackaday Prize Finalist: A Network Of Satellite Ground Stations

There are astonishing things you can do with a network of sensors spread across the globe, all connected to the Internet. Thousands of people have already installed hardware to detect lightning and flightaware gives out subscriptions to their premium service to anyone who will listen in to airplane transponders and send data back to their servers. The folks behind SatNOGS, one of the five finalists for The Hackaday Prize are using this same crowdsourced data collection for something that is literally out of this world: listening to the ever-increasing number of amateur satellites orbiting the planet.

There are dozens of cubesats and other amateur satellites flying every year, and they have become an extremely popular way of experimenting in a space environment, giving some budding engineers an awesome project in school, and testing out some technologies that are just too weird for national space agencies. The problem with sending one of these birds up is getting the data back down; a satellite will pass above the horizon of a single location only a few times a day, and even then for only minutes at a time. The SatNOGS team hopes to change that by planting receivers all around the globe, connecting them to the Internet, and hopefully providing real-time telemetry from dozens of orbiting satellites.

[Pierros] from the SatNOGS team was kind enough to sit down and answer a few questions for us about his entry to The Hackaday Prize. That’s below, right after their finalist video. Some of the SatNOGS team will also be at our Munich event where we announce the winner of the Prize.

Continue reading “Hackaday Prize Finalist: A Network Of Satellite Ground Stations”

Hackaday Prize Finalist: A Portable SDR

No other project to make it to The Hackaday Prize has people throwing money at their computer screen hoping something would happen than [Michael Colton]’s PortableSDR. It’s a software defined radio designed for coverage up to 30MHz. Amateur radio operators across the world are interested in this project, going so far as to call this the first Baofeng UV-5R killer. That’s extremely high praise.

[Michael] was kind enough to sit down and answer a few questions about how his entry to The Hackaday Prize has gone. You can check that out below, along with the final round video of the project. Anyone who wants their own PortableSDR could really help [Michael] out by taking this survey.

Continue reading “Hackaday Prize Finalist: A Portable SDR”

The Hackaday Prize: The Hacker Behind The First Tricorder

Smartphones are the most common expression of [Gene Roddneberry]’s dream of a small device packed with sensors, but so far, the suite of sensors in the latest and greatest smartphone are only used to tell Uber where to pick you up, or upload pics to an Instagram account. It’s not an ideal situation, but keep in mind the Federation of the 24th century was still transitioning to a post-scarcity economy; we still have about 400 years until angel investors, startups, and accelerators are rendered obsolete.

Until then, [Peter Jansen] has dedicated a few years of his life to making the Tricorder of the Star Trek universe a reality. It’s his entry for The Hackaday Prize, and made it to the finals selection, giving [Peter] a one in five chance of winning a trip to space.

[Peter]’s entry, the Open Source Science Tricorder or the Arducorder Mini, is loaded down with sensors. With the right software, it’s able to tell [Peter] the health of leaves, how good the shielding is on [Peter]’s CT scanner, push all the data to the web, and provide a way to sense just about anything happening in the environment. You can check out [Peter]’s video for The Hackaday Prize finals below, and an interview after that.

Continue reading “The Hackaday Prize: The Hacker Behind The First Tricorder”

The Hackaday Prize: Interview With A ChipWhisperer

chipwhisperer

Every finalist for The Hackaday Prize has some aspect of it that hasn’t been done before; finding the chemical composition of everything with some 3D printed parts is novel, as is building a global network of satellite ground stations with off the shelf components. [Colin]’s ChipWhisperer, though, has some scary and interesting implications. By looking inside a microcontroller as its running, the ChipWhisperer is able to verify – or break – security on these chips. It’s also extremely interesting and somewhat magical being able to figure out what data a chip is processing simply by looking at its power consumption.

We have no idea who the winner of The Hackaday Prize is yet, and I’m hoping to remain ignorant of that fact until the party two weeks from now. Until then, you can read the short interview with [Colin O’Flynn], or check out his five-minute video for the ChipWhisperer below:

Continue reading “The Hackaday Prize: Interview With A ChipWhisperer”

Content Centric Networking And A Tour Of (Xerox) PARC

You may be used to seeing rack mounted equipment with wires going everywhere. But there’s nothing ordinary about what’s going on here. [Elecia White] and [Dick Sillman] are posing with the backbone servers they’ve been designing to take networking into the era that surpasses IPv6. That’s right, this is the stuff of the future, a concept called Content Centric Networking.

Join me after the break for more about CCN, and also a recap of my tour of PARC. This is the legendary Palo Alto Research Company campus where a multitude of inventions (like the computer mouse, Ethernet, you know… small stuff) sprang into being.

Continue reading “Content Centric Networking And A Tour Of (Xerox) PARC”