MechBass: A Robotic Bass Guitar That Sounds Fantastic

[James] wrote in to show us his honors project for his fourth year at Victoria University of Wellington. He designed and built this robotic bass guitar. You can hear it performing “mass hysteria” by the band Muse after the break. It sounds great, but we’d love to hear it without the full accompaniment.

[James] doesn’t have a site up for the MechBass, so we’ve included details below.

Continue reading “MechBass: A Robotic Bass Guitar That Sounds Fantastic”

Steam-powered Pickup Winder

[Valve Child] has been building a few three-string cigar box guitars. Of course he’ll need a few pickups, but three-string guitar pickups aren’t exactly easy to come by. To solve this problem, he’s built a guitar pickup winder powered by a steam engine.

The pickup winder is powered by a Wilesco D20 model steam engine, connected to the actual winding mechanism via a rubber belt. To the right of the bobbin bracket is a mechanism built out of Meccano – Erector sets for us americans – that provides a mechanical counter for the number of wire turns and a wire traverse to keep each layer of wire somewhat even across the width of the bobbin.

Previously, we’ve seen [Valve Child]’s really sweet sounding lap steel build from a log using a hand-wound pickup and a preamp tube as the bridge. It’s questionable if the guitar signal came from this lap steel via the pickup or the microphonic tube, but now [Valve Child] has a really, really good method of improving his pickup production abilities.

Video after the break.

Continue reading “Steam-powered Pickup Winder”

Atari Punk Stick Puts A Synth In A Joystick

[youtube=http://www.youtube.com/watch?v=ngXrTd-8jf4&w=470]

The Atari Punk Console, a tiny synthesizer based on the ubiquitous 555 timer chip, is the first build de rigueur for any budding electronic wizard wanting to build musical devices. With just a handful of caps, resistors, and a pair of pots, the APC is a fabulously fun and easy build made even cooler by [Pat]’s addition of a joystick.

The circuit of the Atari Punk Console consists of a 556 chip – basically two 555s put into the same package – and a pair of potentiometers to control the frequency and output of this very basic synth. Since most joysticks are just two pots arranged on an X-Y mount, [Pat] thought it would be cool to control his APC without twiddling knobs, and instead sweeping a joystick around.

After acquiring an old Microsoft joystick from his local Goodwill, [Pat] wired up his Atari Punk Console to the joystick, using the ‘fire’ button to turn the output on and off. The result is everything between a low machine gun-like tone to a nasal square wave that will hopefully keep pace with your chip-based audiophile friends.

Continue reading “Atari Punk Stick Puts A Synth In A Joystick”

MR-808 Is A Mechanical Version Of The Most Famous Drum Machine

Anyone who has listened to any music from the 80s has heard the percussive effects of the infamous TR-808 drum machine. To the modern ear, it sounds like an antique. Being the most popular drum machine of all time means it must have some redeeming qualities, right?

[Moritz Simon Geist] decided he wanted nothing to do with the wimpy computer-based emulations of a TR-808. Instead, he chose a more mechanical version that puts robots inside a gigantic 808 enclosure to play snares, high hats, cowbells, and drums in time with any MIDI drum track.

[Moritz] calls his build the MR-808 and puts a real-life bass drum, snares, hats, toms, claps, and a ride into a 3.3 x 1.7 meter ( 10.8 x 5.5 foot) case. The sound triggers are handled by Max/Msp communicating with a pair of Arduinos to handle the solenoids and light effects. You can read more about the hardware setup in [Moritz]’ behind the scenes look.

After the break you can see the MR-808 in action, both alone and by providing the percussion for [Moritz]’ band. A very cool build that now cries out for an Arduinofied bassist placed into an overgrown TB-303 enclosure.

Continue reading “MR-808 Is A Mechanical Version Of The Most Famous Drum Machine”

ATmega1284 As An 8-voice 32 KHz Synthesizer

A couple of things strike us about this 8-voice 32 kHz synthesizer. First is the cleanliness of the prototype. As you can see, each part has plenty of room on its own board and all are interconnected by 10-pin IDC ribbon connectors. But you’ll have to see the video after the break to enjoy the impressive sound that this puts out. You’ll hear it play the Super Mario Bros. theme; it does it with passion!

To get audio from the digital microcontroller [Mike] built his own R2R digital to analog converter. The resistor ladder is built from sixteen resistors, which feed a rail-to-rail amplifier. The sound is mono but the playback is polyphonic thanks to the work done by the ATmega1284. It is reading MIDI commands coming in from an external controller (we assume it’s the computer on which the hardware is sitting). The chip’s 128 KB of Flash memory leave plenty of room to store samples, which are selected from a lookup table based on the MIDI data. If more than one sample is to be played the chip averages the data and sets the 8-bit output port accordingly.

Continue reading “ATmega1284 As An 8-voice 32 KHz Synthesizer”

Homebrew Guitar Tuner Also Includes MIDI Out

A few years ago, [Frédéric]’s brother in law wanted a guitar tuner for Christmas. Instead of going out and buying one, [Frédéric] broke out the soldering iron and built one from scratch.

[Frédéric]’s tuner is built around an ATMega168 uC on a Real Bare-Bones Board with an LM386 amplifier. The display is a standard 20×2 LCD character display, and the interface is torn from the pages of stomp box schematics with a very hefty foot switch.

Detecting the frequency of a note played into [Frédéric]’s tuner involves a fair bit of math. To measure the frequency, the Arduino samples the waveform coming from the input jack. This signal is delayed for a fraction of a second and the area underneath the real and delayed waveforms is measured. This delay slides across the original waveform until the area between the real and delayed samples are minimized. At that point, delayed wave form will be exactly one cycle behind the real signal, and the cycles per second can be calculated. It’s called the YIN algorithm, and you can read more about it here.

Since [Frédéric] already knew the exact frequency being played into the tuner, he figured it would be trivial to add a small analog audio to MIDI converter. This feature (as shown in the video after the break) turns the sounds from a guitar into MIDI notes. It’s monophonic and probably a little superfluous, but still very cool.

Continue reading “Homebrew Guitar Tuner Also Includes MIDI Out”

Draw Your Own Vinyl Beats

 

The Dyskograf lets you make music with a magic marker. The musical installation looks much like a turntable for playing vinyl records. But instead of a spiraling groove containing the sounds, this uses marks on a paper disk to play sound samples.

You can see the light outline of several tracks on the paper disc shown above. By adding black marks the optical input of the Dyskograf knows when to start and end each sound. This is best illustrated in the video demonstration after the break.

The marker-based setup makes a lot of sense, and we think it would be perfect if the disc was a dry-erase board. It certainly makes it a lot easier to lay down new beats than this other optical turntable which required holes to be drilled in a vinyl record to play the sounds. While we’re on the topic you may also find this coin-based turntable sequencer of interest.

Continue reading “Draw Your Own Vinyl Beats”