Series of purple and red mechanisms are stretched from left to right. Almost like arrows pointing right.

Compliant Mechanism Shrinks Instead Of Stretching

Intuitively, you think that everything that you stretch will pull back, but you wouldn’t expect a couple of pieces of plastic to win. Yet, researchers over at [AMOLF] have figured out a way to make a mechanism that will eventually shrink once you pull it enough.

Named “Counter-snapping instabilities”, the mechanism is made out of the main sub-components that act together to stretch a certain amount until a threshold is met. Then the units work together and contract until they’re shorter than their initial length. This is possible by using compliant joints that make up each of the units. We’ve seen a similar concept in robotics.

The picture reads "Excessive vibrations? / It tames them by itself... / ... by switching them off! Bridge undergoing harmonic oscillation about to crumble on the left and mechanisms on the right.

Potentially this may be used as a unidirectional actuator, allowing movement inch by inch. In addition, one application mentioned may be somewhat surprising: damping. If a structure or body is oscillating through a positive feedback loop it may continue till it becomes uncontrollable. If these units are used, after a certain threshold of oscillation the units will lock and retract, therefore stopping further escalation.

Made possible by the wonders of compliant mechanics, these shrinking instabilities show a clever solution to some potential niche applications. If you want to explore the exciting world of compliance further, don’t be scared to check out this easy to print blaster design!

Continue reading “Compliant Mechanism Shrinks Instead Of Stretching”

Picture of self landing drone satellite with orange and black body. Propellors are extended.

FPV Drone Takes Off From A Rocketing Start

Launching rockets into the sky can be a thrill, but why not make the fall just as interesting? That is exactly what [I Build Stuff] thought when attempting to build a self-landing payload. The idea is to release a can sized “satellite” from a rocket at an altitude upwards of 1 km, which will then fly back down to the launch point.

The device itself is a first-person view (FPV) drone running the popular Betaflight firmware. With arms that swing out with some of the smallest brushless motors you’ve ever seen (albeit not the smallest motor), the satellite is surprisingly capable. Unfortunately due to concerns over the legality of an autonomous payload, the drone is human controlled on the descent.

Using collaborated efforts, a successful launch was flown with the satellite making it to the ground unharmed, at least for the most part. While the device did show capabilities of being able to fly back, human error led to a manual recovery. Of course, this is far from the only rocketry hack we have seen here at Hackaday. If you are more into making the flight itself interesting, here is a record breaking one from USC students.

Continue reading “FPV Drone Takes Off From A Rocketing Start”

Full picture of tendon pulling actuator with Arduino elements in the backdrop

Ratcheting Mechanism Gives Tendons A Tug

A common ratchet from your garage may work wonders for tightening hard to reach bolts on whatever everyday projects around the house. However, those over at [Chronova Engineering] had a particularly unusual project where a special ratchet mechanism needed to be developed. And developed it was, an absolutely beautiful machining job is done to create a ratcheting actuator for tendon pulling. Yes, this mechanical steampunk-esk ratchet is meant for yanking on the fleshy strings found in all of us.

The unique mechanism is necessary because of the requirement for bidirectional actuation for bio-mechanics research. Tendons are meant to be pulled and released to measure the movement of the fingers or toes. This is then compared with the distance pulled from the actuator. Hopefully, this method of actuation measurement may help doctors and surgeons treat people with impairments, though in this particular case the “patient” is a chicken’s foot.

Continue reading “Ratcheting Mechanism Gives Tendons A Tug”

Jolly Wrencher Down To The Micron

RepRap was the origin of pushing hobby 3D printing boundaries, and here we see a RepRap scaled down to the smallest detail. [Vik Olliver] over at the RepRap blog has been working on getting a printer working printing down to the level of micron accuracy.

The printer is constructed using 3D printed flexures similar to the OpenFlexure microscope. Two flexures create the XYZ movement required for the tiny movements needed for micron level printing. While still in the stages of printing simple objects, the microscopic scale of printing is incredible.

Continue reading “Jolly Wrencher Down To The Micron”