3D Printing Your Own Triboelectric Generators

A triboelectric nanogenerator (TENG) certainly sounds like the sort of thing you’d need to graduate from Starfleet Engineering to put together, but it actually operates on the same principle that’s at work when you rub a balloon your head. Put simply, when friction is applied to the proper materials, charges can build up enough to produce a short burst of electrical energy. Do it enough, and you’re on the way to producing useful power.

In a recent paper, [Leo N.Y. Cao], [Erming Su], [Zijie Xu], and [Zhong Lin Wang] describe how a functional TENG can be produced on a standard desktop 3D printer. What’s even more impressive is that the method doesn’t appear to require anything terribly exotic — just some commercially available filaments and a bunch of PTFE beads.

TENGs can be printed in any size or shape.

So how do your print your own TENG? First, you load up an electrically conductive PLA filament and lay down a base into which a series of channels has been designed. At around the half-way point, you pause the print to insert your PTFE beads, and then swap over to standard filament for a few layers to produce an insulator. Finally, you pause again and switch back over to the conductive filament for the rest of the print, encasing the beads inside the structure.

As [Leo N.Y. Cao] demonstrates in the video below, you then clip leads to the top and bottom of the print, and give it a good shake. If everything went right, LEDs wired up to your new high-tech maracas should flash as the PTFE beads move back and forth inside. But there’s a catch. Going back to the balloon-on-the-head example, the effect at play here produces high voltages but low current — the paper says a TENG containing 60 beads should be capable of producing pulses of up to 150 volts.

Naturally, you won’t get very far with just one of these. Like other energy harvesting concepts we’ve covered in the past, such as vibratory wind generators, it would take a bunch of these working together to generate a useful amount of power. But given how cheap and quickly these printable TENGs can be produced, that doesn’t seem like it would be too much of a challenge.

Continue reading “3D Printing Your Own Triboelectric Generators”

Harvesting Mechanical Energy From Falling Rain

Collecting energy from various small mechanical processes has always been something that’s been technically possible, but never done on a large scale due to issues with cost and scalability. It’s much easier to generate electricity in bulk via traditional methods, whether that’s with fossil fuels or other proven processes like solar panels. That might be about to change, though, as a breakthrough that researchers at Georgia Tech found allows for the direct harvesting of mechanical energy at a rate much higher than previous techniques allowed.

The method takes advantage of the triboelectric effect, which is a process by which electric charge is transferred when two objects strike or slide past one another. While this effect has been known for some time, it has only been through the advancements of modern materials science that it can be put to efficient use at generating energy, creating voltages many thousands of times higher than previous materials allowed. Another barrier they needed to overcome was how to string together lots of small generators like this together. A new method that allows the cells to function semi-independently reduces the coupling capacitance, allowing larger arrays to be built.

The hope is for all of these improvements to be combined into a system which could do things like augment existing solar panels, allowing them to additionally gather energy from falling rain drops. We’d expect that the cost of this technology would need to come down considerably in order to be cost-competitive, and be able to scale from a manufacturing point-of-view before we’d see much of this in the real world, but for now at least the research seems fairly promising. But if you’re looking for something you can theoretically use right now, there are all kinds of other ways to generate energy from fairly mundane daily activities.

Continue reading “Harvesting Mechanical Energy From Falling Rain”

Improving Ocean Power With Static Electricity

Water is heavy, so if you think about it, a moving ocean wave has quite a bit of energy. Scientists have a new way to use triboelectric generators to harvest that power for oceangoing systems. (PDF) Triboelectric nanogenerators (TENGs) are nothing new, but this new approach allows for operation where the waves have lower amplitude and frequency, making traditional systems useless.

The new approach uses a rotor and a stator, along with some aluminum, magnets, and — no kidding — rabbit fur. The stator is 3D printed in resin. The idea is to mechanically accumulate and amplify small low-frequency waves into high-frequency motion suitable for triboelectric generation.

Continue reading “Improving Ocean Power With Static Electricity”

Miracle Of Science: Scotch Tape Improves Generator

We were always amused that one of the biggest scientific discoveries of the recent past — graphene — was started with pencil lead and Scotch tape. Now, researchers at the University of Alabama in Huntsville have determined that double-sided Scotch tape can improve triboelectric power generators. Triboelectric generation, of course, is nothing new. These energy harvesters take mechanical and thermal energy and turn them into tiny amounts of electricity. What’s new here is that PET plastic, aluminum, and double-sided tape can make an inexpensive generator that works well.

Keep in mind we are talking about little bits of power. In the best scenario with the device stimulated at 20 Hz, the generator peaked at 21.2 mW. That was better than some designs that only got to 7.6 mW in the same configuration.

Continue reading “Miracle Of Science: Scotch Tape Improves Generator”

Paper Keyboard Is Self-Powered

Building a keyboard isn’t a big project these days. Controller chips and boards are readily available, switches are easy to find, and a 3D printer can do a lot of what used to be the hard parts. But engineers at Purdue have printed a self-powered Bluetooth keyboard on an ordinary sheet of paper. You can see videos of the keyboards at work below.

The keyboards work by coating paper with a highly fluorinated coating that repels water, oil, and dust. Special inks print triboelectric circuits so that pressing your finger on a particular part of the paper generates electricity. We were skeptical that the Bluetooth part is self-powered, although maybe it is possible if you have some very low-power electronics or you manage the power generated very carefully.

Continue reading “Paper Keyboard Is Self-Powered”

Mr. Carlson Gets Zapped By Snow

As a Canadian, [Mr. Carlson] knows a thing or two about extreme winter weather. Chances are good, though, that he never thought he’d get zapped with high voltage generated by falling snow.

[Mr. Carlson]’s shocking tale began with a quiet evening in his jam-packed lab as a snowstorm raged outside. He heard a rhythmic clicking coming from the speakers of his computer, even with the power off. Other speakers in the lab were getting into the act, as was an old radio receiver he had on the bench. The radio, which was connected to an outdoor antenna by a piece of coax, was arcing from a coil to the chassis in the front end of the radio. The voltage was enough to create arcs a couple of millimeters long and bright blue-white, with enough current to give [Mr. Carlson] a good bite when he touched the coax. The discharges were also sufficient to destroy an LED light bulb in a lamp that was powered off but whose power cord was unlucky enough to cross the antenna feedline.

Strangely, the coil from which the arc sprang formed a 36-ohm shunt to the radio’s chassis, giving the current an apparently easy path to ground. But it somehow found a way around that, and still managed to do no damage to the sturdy old radio in the process. [Mr. Carlson] doesn’t offer much speculation as to the cause of the phenomenon, but the triboelectric effect seems a likely suspect. Whatever it is, he has set a trap for it, to capture better footage and take measurements should it happen again. And since it’s the Great White North, chances are good we’ll see a follow-up sometime soon.

Continue reading “Mr. Carlson Gets Zapped By Snow”

Serpentine: multi-purpose hand gesture sensor

There Are Multiple Ways To Gesture With This Serpentine Sensor

Serpentine is a gesture sensor that’s the equivalent of a membrane potentiometer, flex and stretch sensor, and more.  It’s self-powering and can be used in wearable hacks such as the necklace shown in the banner image though we’re thinking more along the lines of the lanyard for Hackaday conference badges, adding one more level of hackability. It’s a great way to send signals without anyone else knowing you’re doing it and it’s easy to make.

Collecting analog data from Serpentine

Serpentine is the core of a research project by a group of researchers including [fereshteh] of Georgia Tech, Atlanta. The sensor is a tube made of a silicone rubber and PDMS (a silicone elastomer) core with a copper coil wrapped around it, followed by more of the silicone mix, a coil of silver-coated nylon thread, and a final layer of the silicone mix. Full instructions for making it are on their Hackaday.io page.

There are three general interactions you can have with the tube-shaped sensor: radial, longitudinal, and tangential. Doing various combinations of these three results in a surprising variety of gestures such as tap, press, slide, twist, stretch, bend, and rotate. Those gestures result in signals across the copper and silver-coated nylon electrodes. The signals pass through an amplifier circuit which uses WiFi to send them on to a laptop where signal processing distinguishes between the gestures. It recognizes the different ones with around 90% accuracy. The video below demonstrates the training step followed by testing.

Serpentine works as a result of the triboelectric nanogenerator (TENG) phenomenon, a mix of the triboelectric effect and electrostatic induction but fabrics can be made which use other effects too. One example is this fabric keyboard and theremin which works in part using the piezoelectric effect.

Continue reading “There Are Multiple Ways To Gesture With This Serpentine Sensor”