Alfred P. Morgan: A Generation’s Radio Hacker

I was surfing the web looking for interesting projects the other day when I ran into [SkyKing’s] exquisite transistor demodulator radio builds. He mentioned that they were “Alfred P. Morgan-style” and that brought back a flood of memories about a man who introduced a whole generation to electronics and radio.

[Morgan] was born in 1889 and in the early part of the twentieth century, he was excited to build and fly an airplane. Apparently, there wasn’t a successful flight. However, he eventually succeeded and wrote his first book: “How to Build a 20-foot Bi-Plane Glider.” In 1910, he and a partner formed the Adams Morgan company to distribute radio construction kits. We probably wouldn’t remember [Morgan] for his airplanes, but we do recognize him for his work with radio.

By 1913, he published a book “The Boy Electrician” which covered the fundamentals of electricity and magnetism (at a time when these subjects were far more mysterious than they are today). [Morgan] predicted the hacker in the preface to the 1947 edition. After describing how a boy was frustrated that his model train automated to the point that he had nothing actually to do, [Morgan] observed:

The prime instinct of almost any boy at play is to make and to create. He will make things of such materials as he has at hand, and use the whole force of dream and fancy to create something out of nothing.

Of course, we know this applies to girls too, but [Morgan] wrote this in 1913, so you have to fill in the blanks. I think we can all identify with that sentiment, though.

Continue reading “Alfred P. Morgan: A Generation’s Radio Hacker”

Radio Receiver Build Log And More

At Hackaday, we like to see build logs, and over on Hackaday.io, you can find plenty of them. Sometimes, though, a builder really outdoes themselves with a lot of great detail on a project, and [N6QW’s] Simple-Ceiver project certainly falls into that category. The project logs document many different stages of completeness, and we linked the first one for you as a starting point, but you’ll definitely want to read up to the present. (There were 16 parts, some spanning multiple posts, last time we checked).

It is definitely worth the effort though. The project started out as a direct conversion receiver, but the design goes through and converts it into a superheterodyne receiver. Along the way, [N6QW] shares construction techniques, design advice, and even simulation plots (backed up with actual scope measurements). The local oscillator, of course, uses an Arduino and an AD9850 synthesizer.

Continue reading “Radio Receiver Build Log And More”

Transmitting Tee Vee From A Pi

Want to set up your own television station? This hack might help: [Jan Panteltje] has worked out how to turn a Raspberry Pi into a DVB-S transmitter. DVB-S is a TV transmission standard originally created for satellite broadcasts, but Hams also use it to send video on the amateur bands. What [Jan] did was to use software on the Pi to encode the video into the transport stream, which is then fed out to the home-made transmitter that modulates the data into a DVB-S signal. [Jan] has successfully tested the system with a direct connection, feeding the output of the transmitter into a DVB-S decoder card that could read the data and decode the video signal. To create a real broadcast signal, the next step would be to feed the output of the signal into an amplifier and larger transmitter that broadcast the signal.

Continue reading “Transmitting Tee Vee From A Pi”

APRS Repeaters Get The Signal Out Of Mammoth Cave

APRS Cave-Link uses the amateur radio’s Automatic Packet Reporting System (APRS) inside caves to get their position data (and other messages) out.

Imagine that you’re coordinating a large scale search-and-rescue mission in a cave. You need to know where all your groups are, and whether or not they’ve found anything. But how do they all communicate to the command center?

You’d guess radio, but you’d guess wrong. Radio doesn’t propagate well at all in a maze of twisty passages, all alike; rocks absorb radio waves, especially in the VHF/UHF range that’s best suited for most small radios. In the past, you’d run wire and transmit along it. This article runs through the options in detail. But adding miles of wire to your already heavy caving and climbing gear is a nuisance or worse.

Continue reading “APRS Repeaters Get The Signal Out Of Mammoth Cave”

Swans, Pigs, And The CIA: An Unlikely Radio Story

Shortwave radio is boring, right? Maybe not. You never know what intrigue and excitement you might intercept. We recently covered secret number stations, and while no one knows for sure exactly what their purpose is, it is almost surely involving cloaks and daggers. However, there’s been some more obvious espionage radio, like Radio Swan.

The swan didn’t refer to the animal, but rather an island just off of Honduras that, until 1972, was disputed between Honduras and the United States. The island got its name–reportedly–because it was used as a base for a pirate named Swan in the 17th century. This island also had a long history of use by the United States government. The Department of Agriculture used it to quarantine imported beef and a variety of government departments had weather stations there.

You might wonder why the United States claimed a tiny island so far away from its shores. It turns out, it was all about guano. The Guano Islands Act of 1856 allowed the president to designate otherwise unclaimed territory as part of the United States for the purpose of collecting guano which, in addition to being bird excrement, is also important because it contains phosphates used in fertilizer and gunpowder. (Honestly, you couldn’t make this stuff up if you tried.)

However, the most famous occupant of Swan Island was Radio Swan which broadcast on the AM radio band and shortwave. The station was owned by the Gibraltar Steamship Company with offices on Fifth Avenue in New York. Oddly, though, the company didn’t actually have any steamships. What it did have was some radio transmitters that had been used by Radio Free Europe and brought to the island by the United States Navy. Did I mention that the Gibraltar Steamship Company was actually a front for the Central Intelligence Agency (CIA)?

Continue reading “Swans, Pigs, And The CIA: An Unlikely Radio Story”

The First Radio Sets: A Spark Gap And A Coherer

[Ashish] let us know about his experiments in recreating the earliest type of radio set: a spark-gap transmitter and iron-filings coherer. He goes through the historical development of the kit in great detail, so we’re just going to skip that part. Go read it yourself!

Instead, we’re going to tease you with the coolest part of the rig: the coherer. In [Ashish]’s build, it’s a piece of tubing with some iron filings between two bolts. When a sufficiently strong EM wave hits the filings, they stick together and bridge the gap between the bolts, allowing electricity to flow and light up an LED, for instance. You can see this in [Ashish]’s video below the break, along with kmore discussion of that coherer.

Continue reading “The First Radio Sets: A Spark Gap And A Coherer”

TV Going The Distance: Propagation

It has to be hard to be a kid interested in radio these days. When I was a kid, there was a lot of interesting things on shortwave. There wasn’t any cable TV (at least, not where I lived) so it was easy to hack antennas and try to pull in weak TV and broadcast stations. The TV stations were especially interesting.

It was one thing for me to build a dish antenna to pick up Star Trek from a station just barely out of range. But sometimes you’d get some really distant TV station. The world’s record is the reception of a BBC TV station in Australia (a distance of 10,800 miles). That’s extreme, but even from my childhood home near New Orleans, I’ve personally picked up TV stations from as far away as New Mexico. Have you ever wondered how that’s possible?

Radio signals behave differently depending on their frequency. The TV frequencies used in the old analog signals were VHF signals (well, the channels between 2 and 13 in the United States, anyway). In general, those signals usually travel through the air, but don’t bounce off any part of the atmosphere. So if you aren’t in a line of sight with the transmitter, you can’t see the broadcast. The other problem is that local stations tend to drown out weak distant stations. A TV DXer (ham lingo for someone trying to hear distant signals) has to wait for local stations to go silent or listen on frequencies where there are no local stations.

Continue reading “TV Going The Distance: Propagation”