Retrotechtacular: The Birth Of Satellite Communications

Last week was the fifty year anniversary of the launching of Telstar 1, the first communications satellite. Take a look back at the marvel of the early technology as shown in this newsreel footage about the first broadcast. The first formal use was a speech by President Kennedy allowing most of Europe to “witness democracy at work”. You’ve got to love that cold war era propaganda.

In addition to this electronics-filled marvel there were other experiments going on at the time that used passive devices as satellites. Project Echo sought to put reflective balloons at an altitude where they could be used to bounce signals around the curvature of the earth. This came almost exactly two years before the advent of Telstar 1.

There was a lot of media coverage of this anniversary, but the most interesting for us was an NPR interview with [Walter Brown], one of the engineers who helped build the device. Apparently nuclear weapons testing in space the day before the launch caused the initial tests to fail.

Continue reading “Retrotechtacular: The Birth Of Satellite Communications”

Re-engineering Some FM Transmitter Firmware

[Furrteck] had a little adventure with this FM transmitter he picked up on eBay. It worked alright, but he wanted to be able to scan through the frequencies, and to have the device return to the same settings after power cycling. He cracked it open and got to work to achieve all of his goals.

The device is driven by an ATmega48, and there’s a 6-pin ISP header on the board. An initial read of the chip wouldn’t work, and he soon discovered the unstable power supply was to blame. After connecting his own regulated source he could read the chip id without a hitch, but the code is locked so no dumping was possible. Fortunately he managed to trace out the board, and includes a full schematic in his write up. With this in hand he erased the chip and started programming his own firmware from the ground up.

The video after the break shows off the completed project. He can now scan through frequencies with audio feedback to let he know when he’s found a station to hijack. The new code will also write a tuned station to EEPROM for use the next time the rig is powered up.

Continue reading “Re-engineering Some FM Transmitter Firmware”

Need A Quadcopter Transmitter? Use A PS2 Controller!

After [Pyrofer] built a quadcopter, he purchased a cheap 6-channel transmitter made in China. Unfortunately, that transmitter was terrible so he took an old PS2 controller and built his own.

For his build, [Pyrofer] broke out the analog sticks and wired them to an AVR housed in the handle of the controller. The AVR sent commands to a 2.4 GHz radio transmitter powered by a small LiPo battery. With the addition of a few tact switches behind the shoulder buttons of the controller, [Pyrofer] has four axes of control with a few buttons for changing modes on his quadcopter.

This build really doesn’t hold a candle to some of the awesome DIY RC transmitters we’ve seen, but we’ve got to give [Pyrofer] credit for coming up with a very simple and easy build. Just about everyone has a PS2 or XBox controller lying around, and with a few extra hardware bits it’s easy to bodge up a decent remote control.

[Pyrofer] used a project called Funkenschlag to generate PPM signals, so if you feel the need to replicate this project send it in when you’re done.

Software-Defined Radio Remotely Using A Linux Wall wart

Here’s a interesting idea; if the hardware seen above is dropped at a location, you can monitor radio signals remotely via the Internet. [MS3FGX] has been toying with the idea for a little while now. He wanted to use a DVB dongle with a portable Linux solution to offer Software-Defined Radio (SDR) capability without the need to actually be there.

The white box is a PWN Plug, a branded version of the SheevaPlug. The black dongle that plugs into it is a DVB tuner dongle. It’s meant to receive television signals over the radio, but recently the hardware has been used as a simple way to implement SDR. Combine the two (along with the antenna), stir in a network connection, and you’ve got a remote listening post. What can you listen to? Just about anything that’s within the dongle’s bandwidth range. [MS3FGX] mentions walkie-talkie traffic and pager signals, to name just two.

He even wrote an installation script that gets you up and running in no time.

Adding More Frequencies To Your Software Defined Radio

[regveg] was looking for a way to receive signals outside the normal 64-1700MHz range his TV tuner software defined radio dongle can get. After finding a few $100+ upconverters on the Internet, he stumbled across a DIY project that greatly expands the frequencies his RTLSDR can receive.

[George]’s upconverter uses heterodyning to increase the frequencies received by a SDR dongle. The basic idea is mixing a signal from an antenna with a 100MHz frequency oscillator. The resulting output will be λ + 100MHz and λ – 100MHz, allowing for a wider range of frequencies that can be received by the SDR TV tuner dongle.

Now [regveg] has a board and schematic that makes it possible to receive just about anything with his TV tuner dongle. Interestingly, this upconverter contains less than $10 in parts and is easily etched at home thanks to a single-sided construction and through-hole parts.

As a small aside, [Andrew] sent in a tip a few days ago telling us his RTL dongle didn’t have any ESD protection. This is a very bad thing, but the good news is the fix is very cheap: just solder in a 10 cent diode and you’re good to go.

Resurrecting A Hi-Fi Cabinet

[VintagePC] pulled this old stereo out of a barn. It was in pretty shabby shape, but he managed get it running again and make it look great as well.

While it had been protected from the elements, it had not been protected from the rodents. Mice had chewed their way through the fiberboard backing and made a nice home inside. He mentions that they chewed the string which operates the tuning dial, and we’re sure they were the cause of other problems as well. He gives the wise advice of not powering on an old set like this until you have a chance to assess the situation.

The insides of the amplifier were about as disorderly as the last radio repair we looked at. But after carefully working his way through the circuits, replacing capacitors and resistors as needed, he started to make some progress. The receiver coil needed to be rewound and he used wire from an old CRT monitor for this purpose. The loop antenna was remounted and the record player arm was given a new cartridge and balanced using a clever LEGO apparatus. Some veneer work and wood finishing brought the case itself back to its original beauty. We’d say the hard work was well worth it. He’s got a big piece of furniture he can always be proud of!

Ancient Radio Repair

They sure don’t build them like that anymore. [J.W. Koebel] managed to take this 1934 Simplex Model P radio and bring it back to life.

So where do you start with a repair job like this one? Being a ham radio guy he has a good idea of what he’s doing, and started by replacing the AC capacitor with one which will provide quality noise filtering. He tried to make fixes throughout that would improve functionality and declutter the wire mess. This led him to find a snapped solder connection on the volume knob. Next he tested out the speaker and found that the primary transformer needed replacing. After as replacing the A67 converter (we’ve got no idea what that is) he swapped out the rest of the original capacitors, most of the resistors, and fixed the mechanical problems with the tuning dial. The result is a working radio that looks fantastic!

[via Reddit]