Testing Antennas With WSPR

There are many ways to test HF antennas ranging from simulation to various antenna analyzers and bridges. However, nothing can replace simply using the antenna to see how it works. Just as — supposedly — the bumblebee can’t fly, but it does so anyway, it is possible to load up some bed springs and make contacts. But it used to be difficult — although fun — to gather a lot of empirical data about antenna performance. Now you can do it all with WSPR and [TechMinds] suggests a moderately-priced dedicated WSPR transmitter to do the job. You can see a video about the results of this technique below.

While WSPR is often cited as taking the fun out of ham radio, it is perfect for this application. Connect the transmitter and a few hours later, visit a web page and find out where you’ve been heard by an objective observer. If you had a few of these, you could even examine several antennas at similar times and conditions.

Continue reading “Testing Antennas With WSPR”

Reverse Engineering A Phased Array System Reveals Surprising Details

The term “phased array” has been around for a long time, but in recent years we’ve heard more and more about the beam shaping that’s possible with phased array antennae. In the video below the break, [The Signal Path] breaks down a Qualcomm 60GHz WiGig unit, and does a deep dive, even looking at the bare silicon and an x-ray of an antenna.

An X-Ray of the antenna shows the intricate design

Some fascinating highlights include how not only the data signal is sent to the antennae through a standard coaxial cable, but so are control signals and a base clock frequency. [The Signal Path] explains how the manufacturer chose to use what’s called a SuperHeterodyne (aka “superhet”) architecture, which is not all that different from those used in traditional amateur radio transceivers. In theory, anyway.

Another element that is discussed is how the PCB’s themselves are used as waveguides, inductors, and transmission line matches, among other countless little hacks to fit a rather complex system into a truly diminutive space.

If you’re not familiar the concept behind phased arrays, check out this article we published in 2019 that shows how phased arrays can steer a beam without any moving parts. It’s quite fascinating!

Continue reading “Reverse Engineering A Phased Array System Reveals Surprising Details”

Beautiful Inductors, Now Not Such A Lost Art

As ferrite technology has progressed into a mastery of magnetic permeability, the size of inductors has gone down to the point at which they are now fairly nondescript components. There was a time though when inductors could be beautiful creations of interleaving layers of copper wire in large air-cored inductors, achieved through clever winding techniques. It’s something that’s attracted the attention of [Brett], who’s produced a machine capable of producing something close to the originals.

Part of the write-up is an investigation of the history, these coils were once present even at the consumer level but are now the preserve of only a few highly secretive companies. They are still worth pursuing though because they can deliver the high “Q” factor that is demanded in a high quality tuned circuit. The rest of the write-up dives in detail into the design of the wire feeder, and the Arduino motor control of the project. There should be enough there for any other experimenters to try their hands at layered inductors, so perhaps we’ll see this lost art make a comeback.

Custom coils are a regular requirement for anything from radios, to musical instruments, to switching power supplies, so it’s not surprising that quite a few projects featuring them have made it here. One of the more unusual of late has been one that winds toroids.

Impatience Is A Virtue When Testing This Old Maritime Teleprinter

[Larry Wall], inventor of Perl, once famously said that programmers have three key virtues: sloth, hubris, and impatience. It’s safe to say that these personality quirks are also present in some measure in most hardware hackers, too, with impatience being perhaps the prime driver of great hacks. Life’s too short to wait for someone else to build it, whatever it may be.

Impatience certainly came into play for [Sebastian (AI5GW)] while hacking a NAVTEX receiver (in German). The NAVTEX system allows ships at sea to receive text broadcast alerts for things like changes in the weather or hazards to navigation. The trouble is, each NAVTEX station only transmits once every four hours, making tests of the teleprinter impractical. So [Sebastian]’s solution was to essentially create his own NAVTEX transmitter.

Job one was to understand the NAVTEX protocol, which is a 100-baud, FSK-modulated signal with characters encoded in CCIR 476. Since this encoding is also used in amateur radio teletype operations, [Sebastian] figured there would surely be an Arduino library for encoding and decoding it. Surprisingly, there wasn’t, but there is now, allowing an Arduino to produce the correct sequence of pulses for a CCIR 476-encoded message. Fed into a function generator, the mini-NAVTEX station’s signal was easily received and recorded by the painfully slow teleprinter. There’s that impatience again.

We thought this was a neat hack, and we especially appreciate that [Sebastian]’s efforts resulted in a library that could be useful to hams and other radio enthusiasts in the future. We’ve talked about some more modern amateur radio digital modes, like WSPR and FT8, but maybe it’s time to look at some other modes, too.

Continue reading “Impatience Is A Virtue When Testing This Old Maritime Teleprinter”

Helping Secure Amateur Radio’s Digital Future

The average person’s perception of a ham radio operator, assuming they even know what that means, is more than likely some graybeard huddled over the knobs of a war-surplus transmitter in the wee small hours of the morning. It’s a mental image that, admittedly, isn’t entirely off the mark in some cases. But it’s also a gross over-simplification, and a generalization that isn’t doing the hobby any favors when it comes to bringing in new blood.

In reality, a modern ham’s toolkit includes a wide array of technologies that are about as far away from your grandfather’s kit-built rig as could be — and there’s exciting new protocols and tools on the horizon. To ensure a bright future for amateur radio, these technologies need to be nurtured the word needs to be spread about what they can do. Along the way, we’ll also need to push back against stereotypes that can hinder younger operators from signing on.

On the forefront of these efforts is Amateur Radio Digital Communications (ARDC), a private foundation dedicated to supporting amateur radio and digital communication by providing grants to scholarships, educational programs, and promising open source technical projects. For this week’s Hack Chat, ARDC Executive Director Rosy Schechter (KJ7RYV) and Staff Lead John Hays (K7VE) dropped by to talk about the future of radio and digital communications.

Rosy kicked things off with a brief overview of ARDC’s fascinating history. The story starts in 1981, when Hank Magnuski had the incredible foresight to realize that amateur radio packet networks could benefit from having a dedicated block of IP addresses. In those early days, running out of addresses was all but unimaginable, so he had no trouble securing 16.7 million IPs for use by licensed amateur radio operators. This block of addresses, known as AMPRNet and then later 44Net, was administered by volunteers until ARDC was formed in 2011 and took over ownership. In 2019, the decision was made to sell off about four million of the remaining IP addresses — the proceeds of which went into an endowment that now funds the foundation’s grant programs.

So where does the money go? The ARDC maintains a list of recipients, which provides for some interesting reading. The foundation has helped fund development of GNU Radio, supported the development of an open hardware CubeSat frame by the Radio Amateur Satellite Corporation (AMSAT), and cut a check to the San Francisco Wireless Emergency Mesh to improve communications in wildfire-prone areas. They even provided $1.6 million towards the restoration of the MIT Radio Society’s radome and 18-foot dish.

Of all the recipients of ARDC grants, the M17 project garnered the most interest during the Chat. This community of open source developers and radio enthusiasts is developing a next-generation digital radio protocol for data and voice that’s unencumbered by patents and royalties. In their own words, M17 is focused on “radio hardware designs that can be copied and built by anyone, software that anyone has the freedom to modify and share to suit their own needs, and other open systems that respect your freedom to tinker.” They’re definitely our kind of folks — we first covered the project in 2020, and are keen to see it develop further.

John says the foundation has approximately $6 million each year they can dole out, and that while there’s certainly no shortage of worthwhile projects to support as it is, they’re always looking for new applicants. The instructions and guides for grant applications are still being refined, but there’s at least one hard requirement for any project that wants to be funded by the ARDC: it must be open source and available to the general amateur population.

Of course, all this new technology is moot if there’s nobody to use it. It’s no secret that getting young people interested in amateur radio has been a challenge, and frankly, it’s little surprise. When a teenager can already contact anyone on the planet using the smartphone in their pocket, getting a ham license doesn’t hold quite the same allure as it did to earlier generations.

Depending on how old you are, this might have been one of the most shocking moments in Stranger Things.

The end result is that awareness among youth is low. During the Chat, one participant recounted how he had to put Netflix’s Stranger Things on pause so he could explain to his teenage son how the characters in the 1980s set show were able to communicate across long distances using a homemade radio. Think about that for a minute — in a show about nightmarish creatures invading our world from an alternate dimension, the hardest thing for this young man to wrap his head around was the fact a group of teenagers would be able to keep in touch with each other without the Internet or phone lines to connect them.

So its no surprise that John says the ARDC is actively looking for programs which can help improve the demographics of amateur radio. The foundation is looking to not only bring younger people onboard, but also reach out to groups that have been traditionally underrepresented in the hobby. As an example, he points to a grant awarded to the Bridgerland Amateur Radio Club (BARC) last year to bolster their youth engagement program. Funds went towards putting together a portable rig that would allow students to communicate with the International Space Station, and the development of hands-on workshops where teens will be able to launch, track, and recover payloads on a high altitude balloon. Let’s see them do that on their fancy new smartphone.

We want to not only thank Rosy Schechter and John Hays for taking part in this week’s Hack Chat, but everyone else at Amateur Radio Digital Communications for their efforts to support the present and future of amateur radio and digital communication.


The Hack Chat is a weekly online chat session hosted by leading experts from all corners of the hardware hacking universe. It’s a great way for hackers connect in a fun and informal way, but if you can’t make it live, these overview posts as well as the transcripts posted to Hackaday.io make sure you don’t miss out.

Bringing Some Discipline To An SDR Transmitter

The proliferation of software-defined radio (SDR) technology has been a godsend for RF hobbyists. SDR-based receivers and transmitters have gotten so cheap that you’ve probably got a stick or two lying around your bench right now — we can see three from where we sit, in fact.

But cheap comes at a price, usually in the form of frequency stability, which can be prohibitive in some applications — especially amateur radio, where spectrum hygiene is of the utmost concern. So we were pleased to see [Tech Minds] tackle the SDR frequency stability problem by using a GPS-disciplined oscillator. The setup uses an ADALM-PLUTO SDR transceiver and a precision oscillator from Leo Bodnar Electronics. The oscillator can be programmed to output a rock-solid, GPS-disciplined signal over a wide range of frequencies. The Pluto has an external oscillator input that looks for 40 MHz, which is well within the range of the GPSDO.

Setup is as easy as plugging the oscillator’s output into the SDR’s external clock input using an SMA to UFL jumper, and tweaking the settings in the SDR and oscillator. Not all SDRs will have an external clock input, of course, so your mileage may vary. But if your gear is suitably equipped, this looks like a great way to get bang-on frequency — the video below shows just how much the undisciplined SDR can drift.

Like any good ham, [Tech Minds] is doing his bit to keep his signals clean and on target. His chief use case for this setup will be to work QO-100, amateur radio’s first geosynchronous satellite repeater. We’ve got to say that we hams living on the two-thirds of the globe not covered by this satellite are just dying to get a geosynchronous bird (or two) of our own to play with like this.

Continue reading “Bringing Some Discipline To An SDR Transmitter”

DIY Low-Cost LoRa Satellite Ground Station

Embedded engineer [Alberto Nunez] has put together a compact LoRa satellite telemetry ground station that fits in your hand and can be built for around $40 USD.

The station receives signals from any of several satellites which use LoRa for telemetry, like the FossaSat series of PocketQube satellites. Even with a sub-optimal setup consisting of a magnetic mount antenna stuck outside a window, [Alberto] is able to receive telemetry from satellites over 2,000 kilometers distant. He also built a smaller variant which is battery powered for portable use.

The construction of this ground station makes use of standard off-the-shelf items with a Heltec ESP32-based LoRa / WiFi module as the heart. This module is one of several supported by the TinyGS project, which provides receiver firmware and a worldwide telemetry network consisting of 1,002 stations as of this writing. The firmware has a lot of features, including OTA updates and auto-tuning of your receiver to catch each satellite as it passes overhead.

The TinyGS project started out as a weekend project back in 2019 to use an ESP32 to receive LoRa telemetry from the FossaSat-1 satellite, and has expanded to encompass all satellites, and other flying objects, using LoRa-based telemetry. It uses Telegram to distribute data, with a message being sent to the channel anytime any station in the network receives a telemetry packet from a satellite.

If you’re interested in getting your feet wet receiving satellite signals, this is an easy project to start with that won’t break the bank.