Repairing Classic Sound Cards

Sound hardware has been built into PC motherboards for so long now it’s difficult to remember the days when a sound card was an expensive add-on peripheral. By the mid to late 1990s they were affordable and ubiquitous enough to be everywhere, but three decades later some of them are starting to fail. [Necroware] takes us through the repair of a couple of Creative Labs Sound Blaster 16s, which were the card to have back then.

The video below is a relaxed look at typical problems afflicting second-hand cards with uncertain pasts. There’s a broken PCB trace on the first one, which receives a neat repair. The second one has a lot more wrong with it though, and reveals some surprises. We would have found the dead 74 series chips, but we’re not so sure we’d have immediately suspected a resistor network as the culprit.

Watching these cards become sought-after in the 2020s is a little painful for those of us who were there at the time, because it’s certain we won’t be the only ones who cleared out a pile of old ISA cards back in the 2000s. If you find one today and don’t have an ISA slot, worry not, because you can still interface it via your LPC bus.

Continue reading “Repairing Classic Sound Cards”

The Jupiter Ace Remembered

It is hard to imagine that it has been more than four decades since two of the original designers of the Sinclair ZX Spectrum broke off to market the Jupiter Ace. [Nemanja Trifunovic] remembers the tiny computer in a recent post, and we always love to recall the old computers that used TVs for screens and audio tape recorders for mass storage.

One thing we always loved about the Jupiter Ace is that while most computers of the era had Basic as their native tongue, the Ace used Forth. As the post points out, while this may have given it great geek cred, it didn’t do much for sales, and the little machine was history within a year. However, the post also proposes that Forth wasn’t the real reason for the machine’s lack of commercial success.

Why did they pick Forth? Why not? It is efficient and interactive. The only real disadvantage was that Basic was more familiar to more people. Books and magazines of the day showed Basic, not Forth. But, according to the post, the real reason for its early demise was that it was already using outdated hardware from day one.

The Ace provided only 3K of RAM and did not offer color graphics. While this may sound laughable today, it wasn’t totally out of the question in 1978. Unfortunately, the Ace debuted in 1982. There were options that offered much more for just a little less. There is also the argument that as users became less technical, they just wanted to load pre-programmed tapes or cartridges and didn’t really care what language was running the computer.

Maybe, but we did and we can’t help but imagine a future where Forth was the language of choice for personal computers. Given how few of these were made, we see a lot of projects around them or, at least, replicas. Of course, these days that can be as simple as a single chip.

A New Mechanical Keyboard For An Old Computer

As computers age, a dedicated few work towards keeping some of the more interesting ones running. This is often a losing battle of sorts, as the relentless march of time comes for us all, human and machine alike. So as fewer and fewer of these machines remain new methods are needed to keep them running as best they can. [CallousCoder] demonstrates a way of building up a new keyboard for a Commodore 64 which both preserves the original look and feel of the retro computer but also adds some modern touches.

One of the main design differences between many computers of the 80s and modern computers is that the keyboard was often built in to the case of the computer itself. For this project, that means a custom 3D printed plate that can attach to the points where the original keyboard would have been mounted inside the case of the Commodore. [CallousCoder] is using a print from [Wolfgang] to get this done, and with the plate printed and a PCB for the keys it was time to start soldering. The keyboard uses modern switches and assembles like most modern keyboards do, with the exception of the unique layout for some of the C64 keys including a latching shift key, is fairly recognizable for anyone who has put together a mechanical keyboard before.

[CallousCoder] is using the original keycaps from a Commodore 64, so there is an additional step of adding a small adapter between the new switches and the old keycaps. But with that done and some amount of configuring, he has a modern keyboard that looks like the original. If you’re more a fan of the original hardware, though, you can always take an original C64 keyboard and convert it to USB to use it on your modern machines instead.

Continue reading “A New Mechanical Keyboard For An Old Computer”

ASCII To Mainframe

IBM mainframes are known for very unusual terminals. But IBM made many different things, including the IBM 3151 ASCII terminal, which uses a cartridge to emulate a VT220 terminal. [Norbert Keher] has one and explains in great detail how to connect it to a mainframe.

It had the 3151 personality cartridge for emulating multiple IBM and DEC terminals. However, the terminal would not start until he unplugged it. The old CRT was burned in with messages from an IBM 3745, which helped him work out some of the configuration.

Continue reading “ASCII To Mainframe”

The Computers Of EPCOT

Even if you aren’t a Disney fan, you probably know about EPCOT — Experimental Prototype Community of Tomorrow — a Disney attraction that promised a glimpse of the future. [ErnieTech] takes a glimpse at the UNIVAC computer that ran the operation in the 1980s. A lot of schools had UNIVAC 1100-series computers back in those days, so while you don’t hear as much about them as, say, IBM 360s, there are hordes of people who have used the 1100s, even if they don’t remember it.

EPCOT opened in 1982, and the UNIVAC not only ran the attraction but was also visible as part of the exhibit’s ambiance. They even used the Pepper’s Ghost illusion to superimpose a little man on top of the equipment.

Continue reading “The Computers Of EPCOT”

The 1980s Computer, French Style

Should you travel around Europe, you may notice that things in France are ever so slightly different. Not necessarily better or worse, simply that the French prefer to plough their own furrow rather than importing cultural tends from their neighbors.

In the 1980s this was evident in their home computers, because as well as a Minitel terminal in your house, you could have an all-French machine plugged into your TV. [Retro Krazy] has just such a machine — it’s a Matra Hachette Alice 32, and its red plastic case hides hardware any of us would have been proud to own back in the day.

At first sight it appears superficially similar to a Sinclair Spectrum, with its BASIC keywords next to the keys. But under that slightly calculator style AZERTY keyboard is an entirely different architecture, a Motorola 6803. The first Alice computer was a clone of a Radio Shack model, and while this one has no compatibility with its predecessor it retains some silicon choices. On the back are a series of DIN sockets, one for a SCART adapter, and more for serial connectivity and a cassette deck. The overall impression is of a well-engineered machine, even if that red color is a little garish.

The Alice hasn’t appeared here on its own before, but we have taken a look at French retrocomputers here in the past.

Continue reading “The 1980s Computer, French Style”

Reverse Engineering The IBM PC110, One PCB At A Time

There’s a dedicated group of users out there that aren’t ready to let their beloved IBM PC110 go to that Great Big Data Center in the Sky. Unfortunately, between the limited available technical information and rarity of replacement parts, repairing the diminutive palmtops can be tricky.

Which is why [Ahmad Byagowi] has started a project that aims to not only collect all the available schematics and datasheets that pertain to the machine, but to reverse engineer all of the computer’s original circuit boards. Working from optical and x-ray scans, the project has already recreated the motherboard, power supply, modem, keyboard, and RAM module PCBs in KiCad.

Just last week the project released production-ready Gerbers for all the boards, but considering there have been 45+ commits to the repository since then, we’re going to assume they weren’t quite finalized. Of course, with a project of this magnitude, you’d expect it to take a few revisions to get everything right. (Hell, we’ve managed to screw up board layouts that had fewer than a dozen components on them.)

If you’d like to lend a hand, [Ahmad] says he could use the help. Beyond checking the boards for problems and reporting issues, he’s also on the hunt for any datasheets or other documentation that can be found for the PC110 or its components. It looks like there’s still schematic work that needs to be done as well, so if your idea of zen is figuring out how ~30 year old computers were wired up internally, this might be the perfect summer project for you.

Interestingly, our very own [Arya Voronova] has been working on creating a drop-in replacement motherboard for the Sony Vaio P using KiCad and imported board images. That hobbyists are now able to do this kind of work using free and open source tools is a reminder of just how far things have come in the last few years.

Thanks to [adistuder] for the tip.