A screenshot of the drone monitoring application, showing spoofed drones and their coordinates

Can’t Disable DJI Drone ID? Spoof It With An ESP!

We have been alerted to a fun tool, a DJI DroneID spoofer software for ESP8266/ESP32 and some other popular MCUs. Last year, we’ve told you about DJI DroneID — a technology DJI added to their drones, which broadcasts data including the drone operator’s GPS position, which, in turn, appears to have resulted in Ukrainian casualties in the Ukraine war. The announcement tweet states that DJI has added mechanisms from downgrading firmware. Hence, the spoofer.

There’s no other hardware needed, well other than an ESP8266 or ESP32 devboard, anyway. After the break you can find a video tutorial from [Joshua Bardwell] that shows you how to upload the code using Arduino IDE, and even going through coordinate tweaks. If you ever reminisced about the concept of throwies and were wondering what kind of useful, well, there’s your answer: clone the Git repo, compile it, program some interesting coordinates in, and witness the imaginary drones fly.

All in all, we get a lovely addition to our shenanigan toolkits. Surely, someone could use a neural network to distinguish real drones from fake ones, but it’s nothing that can’t be solved with a bit of code. Looking for a less daring hack? Well, you can always add some automation to your DJI drone by poking at the RGB LED signals.

Continue reading “Can’t Disable DJI Drone ID? Spoof It With An ESP!”

The FPC adapter shown soldered between the BGA chip and the phone's mainboard, with the phone shown to have successfully booted, displaying an unlock prompt on the screen

IPhone 6S NVMe Chip Tapped Using A Flexible PCB

Psst! Hey kid! Want to reverse-engineer some iPhones? Well, did you know that modern iPhones use PCIe, and specifically, NVMe for their storage chips? And if so, have you ever wondered about sniffing those communications? Wonder no more, as this research team shows us how they tapped them with a flexible printed circuit (FPC) BGA interposer on an iPhone 6S, the first iPhone to use NVMe-based storage.

The research was done by [Mohamed Amine Khelif], [Jordane Lorandel], and [Olivier Romain], and it shows us all the nitty-gritty of getting at the NVMe chip — provided you’re comfortable with BGA soldering and perhaps got an X-ray machine handy to check for mistakes. As research progressed, they’ve successfully removed the memory chip dealing with underfill and BGA soldering nuances, and added an 1:1 interposer FR4 board for the first test, that proved to be successful. Then, they made an FPC interposer that also taps into the signal and data pins, soldered the flash chip on top of it, successfully booted the iPhone 6S, and scoped the data lines for us to see.

This is looking like the beginnings of a fun platform for iOS or iPhone hardware reverse-engineering, and we’re waiting for further results with bated breath! This team of researchers in particular is prolific, having already been poking at things like MITM attacks on I2C and PCIe, as well as IoT device and smartphone security research. We haven’t seen any Eagle CAD files for the interposers published, but thankfully, most of the know-how is about the soldering technique, and the paper describes plenty. Want to learn more about these chips? We’ve covered a different hacker taking a stab at reusing them before. Or perhaps, would you like to know NVMe in more depth? If so, we’ve got just the article for you.

We thank [FedX] for sharing this with us on the Hackaday Discord server!

This Week In Security: Forksquatting, RustDesk, And M&Ms

Github is struggling to keep up with a malware campaign that’s a new twist on typosquatting. The play is straightforward: Clone popular repositories, add malware, and advertise the forks as the original. Some developers mistake the forks for the real projects, and unintentionally run the malware. The obvious naming choice is forksquatting, but the researchers at apiiro went with the safer name of “Repo Confusion”.

The campaign is automated, and GitHub is aware of it, with the vast majority of these malicious repositories getting removed right away. For whatever reason, the GitHub algorithm isn’t catching all of the new repos. The current campaign appears to publishing millions of forks, using code from over 100,000 legitimate projects. It’s beginning to seem that the squatting family of attacks are here to stay.

RustDesk and Odd Certificates

The RustDesk remote access software is interesting, as it’s open source, allows self-hosting, and written in Rust. I’ve had exploring RustDesk as a todo item for a long time, but a bit of concerning drama has just finished playing out. A user pointed out back in November that a test root certificate was installed as part of the RustDesk installation. That root cert is self-signed with SHA1. There is also concern that the RustDesk binaries are signed with a different certificate.

There have been new events since then. First, there was a Hacker News thread about the issue earlier this month. The next day, CVE-2024-25140 was registered with NIST, ranking an insane CVE 9.8 CVSS. Let’s cut through some FUD and talk about what’s really going on.

Continue reading “This Week In Security: Forksquatting, RustDesk, And M&Ms”

An Automotive Locksmith On The Flipper Zero And Car Theft

Here in the hacker community there’s nothing we love more than a clueless politician making a fool of themselves sounding off about a technology they know nothing about. A few days ago we were rewarded in spades by the Canadian Minister of Innovation, Science and Industry François-Philippe Champagne, who railed against the Flipper Zero, promising to ban it as a tool that could be used to gain keyless entry to a vehicle.

Of course our community has roundly debunked this assertion, as capable though the Flipper is, the car industry’s keyless entry security measures are many steps ahead of it. We’ve covered the story from a different angle before, but it’s worth returning to it for an automotive locksmith’s view on the matter from [Surlydirtbag].

He immediately debunks the idea of the Flipper being used for keyless entry systems, pointing out that thieves have been using RF relay based attacks which access the real key for that task for many years now. He goes on to address another concern, that the Flipper could be used to clone the RFID chip of a car key, and concludes that it can in the case of some very old vehicles whose immobilizers used simple versions of the technology, but not on anything recent enough to interest a car thief.

Of course, to many readers this will not exactly be news. But it’s still important, because perhaps some of us will have had to discuss this story with non-technical people who might be inclined to believe such scare stories. Being able to say “Don’t take it from me, take it from an automotive locksmith” might just help. Meanwhile there is still the concern of CAN bus attacks to contend with, something the manufacturers could have headed off had they only separated their on-board subsystems.

Continue reading “An Automotive Locksmith On The Flipper Zero And Car Theft”

Big Candy Is Watching You: Facial Recognition In Vending Machines Upsets University

Most people don’t think too much of vending machines. They’re just those hulking machines that lurk around on train stations, airports and in the bowels of school and office buildings, where you can exchange far too much money for a drink or a snack. What few people are aware of is just how these vending machines have changed over the decades, to the point where they’re now collecting any shred of information on who interacts with them, down to their age and gender.

How do we know this? We have a few enterprising students at the University of Waterloo to thank. After [SquidKid47] posted a troubling error message displayed by a campus M&M vending machine on Reddit, [River Stanley] decided to investigate the situation. The resulting article was published in the February 16th edition of the university’s digital newspaper, mathNEWS.

In a bout of what the publication refers to as “Actual Journalism”, [Stanley] found that the machine in question was produced by Invenda, who in their brochure (PDF) excitedly note the many ways in which statistics like age, gender, foot traffic, session time and product demographics can be collected. This data, which includes the feed from an always-on camera, is then processed and ‘anonymized statistics’ are sent to central servers for perusal by the vending machine owner.

The good news is that this probably doesn’t mean that facial recognition and similar personalized information is stored (or sent to the big vaporous mainframe) as this would violate the GDPR  and similar data privacy laws, but there is precedence of information kiosks at a mall operator taking more liberties. Although the University of Waterloo has said that these particular vending machines will be removed, there’s something uncomfortable about knowing that those previously benign vending machines are now increasingly more like the telescreens in Orwell’s Nineteen Eighty-Four. Perhaps we’re already at the point in this timeline were it’s best to assume that even vending machines are always watching and listening, to learn our most intimate snacking and drinking habits.

Thanks to [Albert Hall] for the tip.

This Week In Security: Wyze, ScreenConnect, And Untrustworthy Job Postings

For a smart home company with an emphasis on cloud-connected cameras, what could possibly be worse than accidentally showing active cameras to the wrong users? Doing it again, to far more users, less than 6 months after the previous incident.

The setup for this breach was an AWS problem, that caused a Wyze system outage last Friday morning. As the system was restored, the load spiked and a caching library took the brunt of the unintentional DDoS. This library apparently has a fail state of serving images and videos to the wrong users. An official report from Wyze mentions that this library had been recently added, and that the number of thumbnails shown to unauthorized users was around 13,000. Eek. There’s a reason we recommend picking one of the Open Source NVR systems here at Hackaday.

ScreenConnect Exploit in the Wild

A pair of vulnerabilities in ConnectWise ScreenConnect were announced this week, Proof of Concepts were released, and are already being used in active exploitation. The vulnerabilities are a CVSS 10.0 authentication bypass and a CVSS 8.4 path traversal bypass.

Huntress has a guide out, detailing how embarrassingly easy the vulnerabilities are to exploit. The authentication bypass is a result of a .Net quirk, that adding an additional directory on the end of a .aspx URL doesn’t actually change the destination, but is captured as PathInfo. This allows a bypass of the protections against re-running the initial setup wizard: hostname/SetupWizard.aspx/literallyanything

The second vulnerability triggers during extension unpack, as the unzipping process doesn’t prevent path traversal. The most interesting part is that the unzip happens before the extension installation finishes. So an attacker can compromise the box, cancel the install, and leave very little trace of exploitation. Continue reading “This Week In Security: Wyze, ScreenConnect, And Untrustworthy Job Postings”

Your Noisy Fingerprints Vulnerable To New Side-Channel Attack

Here’s a warning we never thought we’d have to give: when you’re in an audio or video call on your phone, avoid the temptation to doomscroll or use an app that requires a lot of swiping. Doing so just might save you from getting your identity stolen through the most improbable vector imaginable — by listening to the sound your fingerprints make on the phone’s screen (PDF).

Now, we love a good side-channel attack as much as anyone, and we’ve covered a lot of them over the years. But things like exfiltrating data by blinking hard drive lights or turning GPUs into radio transmitters always seemed a little far-fetched to be the basis of a field-practical exploit. But PrintListener, as [Man Zhou] et al dub their experimental system, seems much more feasible, even if it requires a ton of complex math and some AI help. At the heart of the attack are the nearly imperceptible sounds caused by friction between a user’s fingerprints and the glass screen on the phone. These sounds are recorded along with whatever else is going on at the time, such as a video conference or an online gaming session. The recordings are preprocessed to remove background noise and subjected to spectral analysis, which is sensitive enough to detect the whorls, loops, and arches of the unsuspecting user’s finger.

Once fingerprint patterns have been extracted, they’re used to synthesize a set of five similar fingerprints using MasterPrint, a generative adversarial network (GAN). MasterPrint can generate fingerprints that can unlock phones all by itself, but seeding the process with patterns from a specific user increases the odds of success. The researchers claim they can defeat Automatic Fingerprint Identification System (AFIS) readers between 9% and 30% of the time using PrintListener — not fabulous performance, but still pretty scary given how new this is.