Hackaday Prize Entry: Unlock Your PC The RFID Way

Sometimes we see projects whose name describes very well what is being achieved, without conveying the extra useful dimension they also deliver. So it is with [Prasanth KS]’s Windows PC Lock/Unlock Using RFID. On the face of it this is a project for unlocking a Windows PC, but when you sit down and read through it you discover a rather useful primer for complete RFID newbies on how to put together an RFID project. Even the target doesn’t do it justice, there is no reason why this couldn’t be used with any other of the popular PC operating systems besides Windows.

The project takes an MRFC-522 RFID module and explains how to interface it to an Arduino. In this case the Arduino in question is an Arduino Pro Micro chosen for its ability to be a USB host. The supplied code behaves as a keyboard, sending the keystroke sequence to the computer required to unlock it. The whole is mounted in what seems to be a 3D printed enclosure, and for ease of use the guts of the RFID tag have been mounted in a ring.

As we said above though, the point of this project stretches beyond a mere PC unlocker. Any straightforward RFID task could use this as a basis, and if USB is not a requirement then it could easily use a more run-of-the-mill Arduino. If you’re an RFID newbie, give it a read.

Plenty of RFID projects have made it here before, such as this door lock. And we’ve had another tag in a ring, too.

Hackaday Prize Entry: Playing With USB Power Delivery

USB Power Delivery is the technology that’s able to pump 100 Watts down a USB cable. It’s been around for half a decade now, but only in the last few years have devices and power supplies supporting USB PD shown up on the market. This is a really interesting technology, and we can’t wait to see the outcome of people messing around with five amps flowing through a cable they picked up at the dollar store, but where are the DIY solutions to futz around with USB PD?

For his Hackaday Prize entry, [Clayton] is doing just that. He’s built a tiny little power jack for USB PD that has a USB type-C plug on one end and a pair of screw terminals on the other. It’s the USB PD Buddy Sink, and once we find some cheap 100 Watt USB power adapters, this is going to be an invaluable tool.

Getting 100 Watts out of a USB charger is a bit more complex than just soldering a few wires together. The power delivery must be negotiated, and for that [Clayton] is using a simple, cheap STM32F0 ARM microcontroller. Plugging into a USB bus is a bit more complicated, but luckily On Semi has a neat little programmable USB Type-C controller PHY that does all the work. Throw in a few MOSFETS and other ancillary parts, and you have a simple, small 100 Watt power supply that plugs right into your new fancy laptop charger.

The design of the USB PD Buddy Sink is complete, and [Clayton] has a bunch of these on hand. He’s selling them on Tindie, but it’s also a great entry to the Hackaday Prize.

Hackaday Prize Entry: Giving Phones Their Tactile Buttons Back

In the before-times, we could send text messages without looking at our phones. It was glorious, and something 90s Kids™ wish we could bring to our gigantic glowing rectangles stuck in our pocket. For his Hackaday Prize Entry, [Kyle] is bringing just a little bit of this sightless functionality back to the modern smartphone. He’s building a tactile remote control for smartphones. With this device, you can navigate through icons, push buttons, and even zoom in on maps with real, physical controls.

This keyboard is built around a handful of Cherry MX mechanical key switches for a great tactile feel, and a single capacitive touch strip for zooming in and out on the screen. This is pretty much exactly what you want for real, mechanical buttons for a smartphone — a satisfying click and a zoomy strip. The microcontroller used in this device is the BGM111 Bluetooth LE module from Silicon Labs. It’s an extremely low-power module that is able to read a cap touch strip and a few button inputs. Power is provided by a 2032 coin cell, giving the entire device a low profile form factor (except for the MX switches, but whatever), and more than enough run time.

It should be noted that [Kyle] is building this as a solution to distracted driving. True, looking down to send a quick text while driving is the cause of thousands of deaths. However, while typing out a quick note with a T9 keyboard on your Nokia seems like it’s less dangerous, it’s really not. Doing anything while driving is distracted driving, and there are volumes of studies to back this up. Outside the intended use case, this is a fantastic project that uses a neat little Bluetooth module we don’t see much of, and there are some pretty cool applications of a tiny wireless mechanical keyboard with cap touch we can think of.

Hackaday Prize Entry: Modular, Rapid Deployment Power Station

After a disaster hits, one obvious concern is getting everyone’s power restored. Even if the power plants are operational after something like a hurricane or earthquake, often the power lines that deliver that energy are destroyed. While the power company works to rebuild their infrastructure, [David Ngheim]’s mobile, rapid deployment power station can help get people back on their feet quickly. As a bonus, it uses renewable energy sources for power generation.

The modular power station was already tested at Burning Man, providing power to around 100 people. Using sets of 250 Watt panels, wind turbines, and scalable battery banks, the units all snap together like Lego and can fit inside a standard container truck or even the back of a pickup for smaller sizes. The whole thing is plug-and-play and outputs AC thanks to inverters that also ship with the units.

With all of the natural disasters we’ve seen lately, from Texas to Puerto Rico to California, this entry into the Hackaday Prize will surely gain some traction as many areas struggle to rebuild their homes and communities. With this tool under a government’s belt, restoration of power at least can be greatly simplified and hastened.

One More Day For Hackaday Prize Glory

This is your last day to enter the 2017 Hackaday Prize. The theme is to Build Something that Matters, so don’t sit on the sidelines.

You have great power to make a change in the world. Put your mind to a problem you believe is worth solving and inspire us with your build. Whether it’s a turnkey solution or a seed idea that inspires those around you, let’s work on making the world a little bit better place. Get your entry for Anything Goes in by Monday morning.

As Entries Close, Finalists Polish Their Projects

There have been five challenge rounds of the Hackaday Prize and we’ve seen more than 1000 entries. From each round, 20 finalists were chosen who were awarded $1000 each but we’re just getting started. The top five prizes totaling $75,000 still remain.

A panel of fantastic Hackaday Prize Judges will begin reviewing the final round projects on October 21st. Finalists are continuing to refine their projects since being selected, adding project logs, a bill of material, design files, and a project video. This all leads to the awarding of the Grand Prize on Saturday, November 11th at the Hackaday Superconference.

Hackaday Prize Entry: An Open Radiation Detector

For his Hackaday Prize entry, [Carlos] is pushing the boundaries of what can be built with PCBs. He’s designed a very low-cost radiation detector that leverages pick and place machines, off-the-shelf components, and very simple electronics. It’s a novel ion chamber design, and if you ever needed a low-cost, easily manufacturable radiation detector, this is the project you want.

Instead of a Geiger tube or a spark detectors, this radiation detector uses an ionization chamber to detect radiation. This project was inspired by the work of [Charles Wenzel] and [Alan Yates], and the implementation is actually pretty simple. A metal can — or some other type of enclosure — is electrified, and a single wire is stuck right into the middle of the can. When alpha and beta particles enter the can, air molecules are ionized, and attracted to either the can or the wire by a difference in voltage. A tiny bit of current flows between the can and the wire, which can be detected if you have a sufficiently sensitive circuit.

The basic idea is well-publicised and well-understood. What [Carlos] is doing with this project is making an ionization chamber easily manufacturable. He’s doing this entirely with standard PCBs and solder instead of paint cans, RF connectors, and deadbugged transistors of the earlier experiments. The resulting PCB actually looks like something that wasn’t put together in a garage (even though it probably was), and is an amazing entry for the Hackaday Prize.

Hackaday Prize Entry: IoT Nixie Clocks

Nixie clocks are the in thing right now, and they have been for at least a decade. For his Hackaday Prize entry, [mladen] is bringing things into the 21st century with a USB-powered, IoT Nixie clock. It displays the time, temperature, the current cryptocurrency price in fiat, your current number of Twitter followers, the number of updoots on your latest reddit meme, or anything else that can be expressed as four digits.

This Nixie clock uses four IN-12B tubes, with the dot, which are more or less standard when it comes to small Nixie clocks. These tubes are mounted directly to a PCB, which is in turn mounted at 90 degrees to the main board, providing a slim form factor for the machined wood or aluminum enclosure.

The control electronics are built around the ESP8266, with a handy USB connection providing the power and a serial connection. A BQ3200 real time clock keeps the time with the help of a supercapacitor. The killer feature here is a piezo sensor to detect taps on the enclosure. Hit the clock once, and it displays the time. Hit it two times, and the current balance of your bitcoin wallet is displayed. It’s a great project, and [mladen] is hoping to turn this project into a product and put it up on Crowdsupply soon. All in all, a great entry to The Hackaday Prize.