Watermelon Air Boat

watermelon-air-boat

We think you’ll turn a few heads in Central Park if you’re driving a water melon around when everyone else is piloting sailboats. This watermelon is both sea worthy and radio controlled thanks to the work which [Starting Electronics] put into it.

We used this image because it shows you what’s inside of the hull, but you don’t want to miss the thing motoring around an above-ground swimming pool in the clip after the break. The hollowed out shell is quite buoyant and has no problem staying afloat and upright with the addition of a propeller. The parts from a remote control airplane kit have been mounted on a wooden scaffold. This provides plenty of thrust with a servo motor moving turning the prop for directional control. There is no dagger board so the craft is a bit slow to respond to turns. But how responsive do you expect a floating melon to be?

Continue reading “Watermelon Air Boat”

Table Golf

table-golf

This could be the dawning of a new hackerspace sport. [Antoni Kaniowski] and [Rohit Sharma] came up with a delightful game of desktop golf. But the control scheme has a decidedly geeky flair. They’re using salvaged parts from an audio device and a hard drive to control the swing of the mechanical golfer just out of focus in the background of this image.

The game was built for a class project at the Copenhagen Institute of Interaction Design. Originally they wanted to have haptic feedback which would help you learn to tailor each shot for a perfect game. This proved to be impossible with the hardware they had on hand, but as you can see from the clip after the break the system still turned out just great. The audio slide which is taped to the underside of the table adjust the swing velocity. The hunk of hardware from an old hard drive acts the trigger for the swing.

The ‘hole’ is a laser cut ring of plywood. We’d love to see complicated courses designed in CAD and meticulously assembled for competition… but maybe we’re just getting carried away.

Continue reading “Table Golf”

More Fun With Syma 107 Reverse Engineering

Syma Reverse Engineering

[Jim] used a logic analyzer to do some in depth analysis of the Syma 107G helicopter’s IR protocol. We’ve seen work to reverse engineer this protocol in the past, but [Jim] has improved upon it.

Instead of reading the IR output of the controller, [Jim] connected a Saleae Logic directly to the controller’s circuitry. This allowed him to get more accurate timing, which helped him find out some new things about the protocol. He used this to create a detailed explanation of the protocol.

One of the major findings is that the controller used a 3 byte control packet, which contradicts past reverse engineering of the device. There’s also a new explanation of how multiple channels work. This allows multiple helicopters to be flown without the controllers interfering.

The write up is quite detailed, and explains the reverse engineering process. It also provides great information for anyone wanting to hack one of these low cost helicopters. From the details [Jim] worked out, it would be fairly easy to implement the protocol on your own hardware.

Autonomous Helicopter Works Like A Wii Remote

autonomous-ir-helicopter

[Jack Crossfire] took one of those inexpensive indoor helicopters and made it autonomous. He didn’t replace the hardware used for the helicopter, but augmented it and patched into the remote control to make a base station.

The position feedback is provided in much the same way that the Wii remote is used as a pointing device. On the gaming console there is a bar that goes under the TV with two IR LEDs in it. This is monitored by an IR camera in the Wii remote and used to calculate where you’re pointing the thing. [Jack’s] auto-pilot system uses two Logitech webcams with IR filters over the sensors. You can see them mounted on the horizontal bar in the cutout above. The helicopter itself has an IR LED added to it that is always on. The base station follows this beacon by moving the cameras with a pair of servo motors, calculating position and using it when sending commands to the remote control’s PCB.

Don’t miss the demo video of the rig after the break.

Continue reading “Autonomous Helicopter Works Like A Wii Remote”

Building A Pirate Cannon For Fun And Plunder

Our days by the pool are behind us for the year. But playing pirate ship with a 2-year-old does sound like quite a bit of fun. That’s why [The Stone Donkey] built this pirate cannon prop complete with firing sounds.

The simplicity of the design is pretty brilliant. Three segments of PVC and five fittings make for a realistic looking barrel that won’t throw your back out when you pull this one out for playtime. After some cutting and gluing the entire thing was sprayed with matte black paint. The bit of rope wrapped around the barrel is a nice touch. The base was made with some scrap pine, but it’s that little wooden box on top that makes it really special. It is the fuse box, and a tap of the finger gives a burning fuse sound and video followed by an earth-shattering kaboom. [The Stone Donkey] used his old Droid X Android phone and wrote an app for it that puts on the sound and light show. Take a look in the clip after the break.

Continue reading “Building A Pirate Cannon For Fun And Plunder”

Turning Four Smaller Helicopters Into One Larger Quadcopter

copter

There’s a reason we’ve seen a menagerie of quadcopters over the past few years – the key piece of any quadcopter build is an inertial measurement unit. Historically a very complicated and expensive piece of kit, these IMUs came down in price a few years back, allowing anyone with a few dollars in their pocket and a handful of brushless motors to build a four-bladed drone in their workshop.

[Starlino] built a few quadcopters, but he wanted to shy away from IMUs and get most of the mass of his new ‘copter over the center of the chassis. He came up with a design he calls the quadhybrid that can be built out of a quartet of those cheap 3-channel helicopter toys.

Most of the lift for [Starlino]’s quadhybrid comes from a pair of coaxial rotors from a Syma 001 3-channel helicopter toy. Anyone who has played with one of these toy helicopters knows how stable they are; if the tail rotor breaks, you’re left with a helicopter that can only go up and down.

To give his quadhybrid a few degrees of freedom, he attached four tail rotors from 3-channel helis to a few booms laid out in a cross pattern. By taking the receiver out of a 4-channel helicopter and adding his own controller board, [Starlino] made each of the tail rotors control the pitch and roll of the craft.

In the video after the break, you can see the quadhybrid is amazingly stable even without an IMU and surprisingly agile. As [Starlino]’s ‘copter can be made out of replacement parts for cheap 3-channel helis, we’ll expect a rush on these tail motors at your favorite online RC retailer very shortly.

Continue reading “Turning Four Smaller Helicopters Into One Larger Quadcopter”

Coin-op Sega Rally Used To Race RC Cars

Head to head video game action can’t even compare to this use of a coin-op Sega Rally game to race actual RC vehicles. Take a close look at those screens and you’ll see there are no computer graphics, just a feed for a camera on each of the toy cars.

The project was conceived for the Sapo Codebits VI conference in Portugal. The arcade cabinets had their controls connected to an Arduino, but getting video up and running wasn’t nearly as easy. After fruitless attempts to get the original CRTs to work the team ended up replacing them with functioning CRT units of the same size. The cars themselves have two camera, one on top of the vehicle’s cab and one mounted on a boom for a perspective that was above and behind the vehicle. The drivers can switch between either view. The cars were set loose in the room serving as the event’s retro gaming area and players were free to race each other wherever they pleased. Don’t miss the video clip after the break which shows off all of the fun. Continue reading “Coin-op Sega Rally Used To Race RC Cars”