COBB Tuning Hit With $2.9 Million Fine Over Emissions Defeat Devices

Recently, the EPA and COBB Tuning have settled after the latter was sued for providing emissions control defeating equipment. As per the EPA’s settlement details document, COBB Tuning have since 2015 provided customers with the means to disable certain emission controls in cars, in addition to selling aftermarket exhaust pipes with insufficient catalytic systems. As part of the settlement, COBB Tuning will have to destroy any remaining device, delete any such features from its custom tuning software and otherwise take measures to fully comply with the Clean Air Act, in addition to paying a $2,914,000 civil fine.

The tuning of cars has come a long way from the 1960s when tweaking the carburetor air-fuel ratios was the way to get more power. These days cars not only have multiple layers of computers and sensor systems that constantly monitor and tweak the car’s systems, they also have a myriad of emission controls, ranging from permissible air-fuel ratios to catalytic converters. It’s little surprise that these systems can significantly impact the raw performance one might extract from a car’s engine, but if the exhaust of nitrogen-oxides and other pollutants is to be kept within legal limits, simply deleting these limits is not a permissible option.

COBB Tuning proclaimed that they weren’t aware of these issues, and that they never marketed these features as ’emission controls defeating’. They were however aware of issues regarding their products, which is why they announced ‘Project Green Speed’ in 2022, which supposedly would have brought COBB into compliance. Now it would seem that the EPA did find fault despite this, and COBB was forced to making adjustments.

Although perhaps not as egregious as modifying diesel trucks to ‘roll coal’, federal law has made it abundantly clear that if you really want to have fun tweaking and tuning your car without pesky environmental laws getting in the way, you could consider switching to electric drivetrains, even if they’re mind-numbingly easy to make performant compared to internal combustion engines.

Airline Seats Are For Dummies

You normally don’t think a lot would go into the construction of a chair. However, when that chair is attached to a commercial jet plane, there’s a lot of technology that goes into making sure they are safe. According to a recent BBC article, testing involves crash dummies and robot arms.

Admittedly, these are first-class and business-class seats. Robots do repetitive mundane tasks like opening and closing the tray table many, many times. They also shoot the seats with crash dummies aboard at up to 16 Gs of acceleration. Just to put  that into perspective, a jet pilot ejecting gets about the same amount of force. A MiG-35 pilot might experience 10 G.

We didn’t realize how big the airline seat industry is in Northern Ireland. Thompson, the company that has the lab in question, is only one of the companies in the country that builds seats. Apparently, the industry suffered from the global travel slowdown during the pandemic but is now bouncing back.

While people worry about robots taking jobs, we can’t imagine anyone wanting to spend all day returning their tray table to the upright and locked position repeatedly. We certainly don’t want to be 16 G crash dummies, either.

Crash dummies have a long history, of course. Be glad airliners don’t feature ejector seats.

Thermal Runaway: Solving The Bane Of Electric Vehicles

Although battery fires in electric cars and two-wheeled vehicles are not a common phenomenon, they are notoriously hard to put out, requiring special training and equipment by firefighters. Although the full scope of the issue is part of a contentious debate, [Aarian Marshall] over at Wired recently wrote an article about how the electric car industry has a plan to make a purportedly minor issue even less of an issue. Here the questions seem to be mostly about what the true statistics are for battery fires and what can be done about the primary issue with batteries: thermal runaway.

While the Wired article references a study by a car insurance company about the incidence of car fires by fuel type (gas, hybrid, electric), its cited sources are dubious as the NTSB nor NHTSA collect statistics on these fires. The NFPA does, but this only gets you up to 2018, and they note that the data gathering here is spotty. Better data is found from European sources, which makes clear that battery electric vehicles (BEVs) catch fire less often than gasoline cars at 25 per 100,000 cars sold vs 1529/100k for ICE cars, but when BEVs do burn it’s most often (60%) from thermal runaway, which can be due to factors like a short circuit in a cell, overcharging and high ambient temperatures (including from arson or after-effects of a car crash). Continue reading “Thermal Runaway: Solving The Bane Of Electric Vehicles”

Train Speed Signaling Adapted For Car

One major flaw of designing societies around cars is the sheer amount of signage that drivers are expected to recognize, read, and react to. It’s a highly complex system that requires constant vigilance to a relatively boring task with high stakes, which is not something humans are particularly well adapted for. Modern GPS equipment can solve a few of these attention problems, with some able to at least show the current speed limit and perhaps an ongoing information feed of the current driving conditions., Trains, on the other hand, solved a lot of these problems long ago. [Philo] and [Tris], two train aficionados, were recently able to get an old speed indicator from a train and get it working in a similar way in their own car.

The speed indicator itself came from a train on the Red Line of the T, Boston’s subway system run by the Massachusetts Bay Transportation Authority (MBTA). Trains have a few unique ways of making sure they go the correct speed for whatever track they’re on as well as avoid colliding with other trains, and this speed indicator is part of that system. [Philo] and [Tris] found out through some reverse engineering that most of the parts were off-the-shelf components, and were able to repair a few things as well as eventually power everything up. With the help of an Arduino, an I/O expander, and some transistors to handle the 28V requirement for the speed indicator, the pair set off in their car to do some real-world testing.

This did take a few tries to get right, as there were some issues with the power supply as well as some bugs to work out in order to interface with the vehicle’s OBD-II port. They also tried to use GPS for approximating speed as well, and after a few runs around Boston they were successful in getting this speed indicator working as a speedometer for their car. It’s an impressive bit of reverse engineering as well as interfacing newer technology with old. For some other bits of train technology reproduced in the modern world you might also want to look at this recreation of a train whistle.

Continue reading “Train Speed Signaling Adapted For Car”

Credit: Silversea cruises

Cruise Ship-Lengthening Surgery: All The Cool Companies Are Doing It

Sliding in an extra slice of cruise ship to lengthen it. (Credit: Silversea cruises)
Sliding in an extra slice of cruise ship to lengthen it. (Credit: Silversea cruises)

The number of people going on cruises keeps rising year over year, with the number passengers carried increasing from just over 3.7 million in 1990 to well over 28 million in 2023. This has meant an increasing demand for more and also much larger cruise ships, which has led to an interesting phenomenon where it has become more economical to chop up an existing cruise ship and put in an extra slice to add many meters to each deck. This makes intuitively sense, as the segment added is fairly ‘dumb’, with no engine room, control systems, but mostly more rooms and cabins.

The current top-of-the-line cruise ship experience is exemplified by the Icon class that’s being constructed for the Royal Caribbean Group. The first in this line is the Icon of the Seas, which is the largest cruise ship in the world with a length of 364.75 meters and a gross tonnage of 248,663. All of this cost €1.86 billion and over two years of construction time, compared to around $80 million and a few months in the drydock. When combined with a scheduled maintenance period in the drydock, this ‘Jumboization’ process can be considered to be a great deal that gives existing cruise ships a new lease on life.

Extending a ship in this manner is fairly routine as well, with many ships beyond cruise ships seeing the torch before being split. A newly built segment is then slid in place, the metal segments are welded together, wires, tubing and more are spliced together, before the in and outside are ready for a new coat of paint that makes it seem like nothing ever happened to the ship.

Continue reading “Cruise Ship-Lengthening Surgery: All The Cool Companies Are Doing It”

Self Driving Cars Learn From Our Eyes

[Michelle Hampson] reports in IEEE Spectrum that Chinese researchers may improve self-driving cars by mimicking how the human eye works. In some autonomous cars, two cameras use polarizing filters to help understand details about what the car sees. However, these filters can penalize the car’s vision in low light conditions.

Humans, however, have excellent vision in low-lighting conditions. The Retinex theory (based on the Land Effect discovered by [Edwin Land]) attributes this to the fact that our eyes sense both the reflectance and the illumination of light. The new approach processes polarized light from the car’s cameras in the same way.

Continue reading “Self Driving Cars Learn From Our Eyes”

A photo of a white dog with curly fur riding a black skateboard with grey motors under the front deck. There are blue squares on the top of the deck that she is standing on to steer the board.

An Electric Skateboard For The Dogs

What’s a dog to do if they want to do some accessible skateboarding? [Simone Giertz]’s three-legged pup, [Scraps], got the chance to try a LEGO Technic board for her thrills.

This electric LEGO skateboard features six motors and paw pedals to let [Scraps] steer while [Giertz] remotely controls the speed of the board. While it’s not a particularly fast ride, it does let [Scraps] live out her dreams of being a YouTube dog skateboard celebrity.

A video from [Giertz] wouldn’t be complete without a life lesson, and this time it was the importance of rest to the creative process. Sometimes when a solution eludes you, it’s just time to take a break. The steering mechanism, in particular, was giving her trouble but became simple the next morning. We’re also treated to an adorable shot of [Scraps] napping when the initial shoot of her riding the board wasn’t going as planned.

Want to try your hand at making your own skateboard? How about a deck from recycled plastic, tank treads instead of wheels, or is a rocket-powered skateboard more your speed?

Continue reading “An Electric Skateboard For The Dogs”