Reverse Engineering LED Vodka Bottle Displays

wireless_led_marquee

When [Tyler] heard about the LED matrix display that Medea Vodka was building into their bottles, he immediately wanted to get his hands on one. Who could blame him? Someone had finally combined two things we love dearly: booze and LEDs.

He struggled to find a bottle at any of his local stores for the longest time, but was absolutely stoked when he finally came across one of their reps promoting the brand while he was out shopping.

Once he got home, he pulled the display off the bottle and began poking around to see what made it tick. The display is made from a flexible PCB, and attached to the bottle with some clear elastic film. It is powered by two CR2032 batteries and controlled by a PIC16F chip, which pulls stored messages from a small Atmel EEPROM.

Once he figured out how to control the LED matrix, he uploaded his own fonts and added a LINX wireless module to remotely send messages to the board. He mounted it in a wooden frame and now uses it as a simple marquee display.

If you have one of these displays hanging around your house, be sure to swing by his site for schematics of his wireless interface board as well as the code he uses to drive the marquee. You can check out a video of the display in action there as well.

Transmitting Power And Data Through Thick Metal Enclosures

So let’s say you have a submarine, or a nuclear containment chamber which has walls made of thick metal. Now let’s say you want to transmit power or data through this wall. Obviously you’re not going to want to drill a hole since this wall is either keeping seawater out, or potential contamination in, but wireless signals aren’t going to travel well through dense metal. [Tristan Lawry’s] entry in the Lamelson-MIT Rensselaer Student Prize seeks to address this issue by using ultrasound waves to transmit data and power.

In the video after the break [Tristan] speaks briefly about his project, then demonstrates the transmission of power and digital audio simultaneously through a two-inch thick steel plate. This is accomplished with a set of piezo transducers attached to both the inside and outside of the plate. Communications originate by feeding electricity to one transducer, which sends ultrasonic vibrations through the material to be received by its counterpart on the other side. It’s easy for us to understand data transmission conducted in this manner, after all that’s how the knock block receives information. What we don’t understand is how it can “transfer large amounts of electrical power”. If you can explain it in layman’s terms please do so in the comments.

Continue reading “Transmitting Power And Data Through Thick Metal Enclosures”

Wireless Luge Timer Levels The Playing Field

wireless_luge_timer

In Colorado, amateur luge competitions are serious business.

Every winter, [Ryan’s] friends dig a long luge track through the many feet of snow that occupies their yard, and have competitive sled races to see who can make it down the giant hill in the least time. They call it the Mario Cup, after one of the participants, not the Nintendo mascot, and they were in desperate need of some timing equipment.

You see, the luge track is several hundred feet long, and they decided that a human armed with a stopwatch is not a good enough means of picking a conclusive winner. A set of three Arduino sensors packed inside plastic food containers were used along with light sensors to track when the luger passed the start, midpoint, and finish lines of the race. XBee radios then transmitted the timing data back to the base station for recording.

The system worked quite well according to the participants, and they look forward to using the system again in the future. Of course, improvements have been planned, including dual timers at each checkpoint to gauge the luger’s speed, as well as a Christmas-tree starting signal like you see at drag races.

Continue reading to see a video below of the luger’s in action, as well as the timer system undergoing some tests.

[via Make]

Continue reading “Wireless Luge Timer Levels The Playing Field”

Open Source Wireless Mesh Networking Energy Meter

[Jay Kickliter] writes in to tell us about his open source energy/power meter. With his buddy [Frank Lynam] they designed a small device that crams into existing power boxes and uses and 8 core propeller (P8X32A) microcontroller to perform true RMS voltage and current measurements using a current transformer. [Frank] and [Jay] don’t stop there. The meter also features an xbee pro 900 MHZ to provide wireless (and even mesh networking) capabilities to the whole ordeal.

[Jay and Frank] estimate a total unit cost of around $80 (US) per prototype. With volume the price goes down by about half. With a larger number of units, and the magic of mesh networking, we could see cheaper xbee’s driving the cost down some. Check out the Google code page for details or the schematic (pdf) if you are interested.

So far the project is in the beta stages, and only features a single module sending data to a PC running an OS X Cocoa application. [Jay] is about to be otherwise occupied by the Merchant Marines and [Frank] the Navy, so they figured we could have a go at it for awhile.

We have seen other hardware used to monitor power consumption, but cramming this circuit into each power box is a neat idea.

[Frank] explains the whole project in the video after the jump.

Continue reading “Open Source Wireless Mesh Networking Energy Meter”

WiFi Radio Plays Your Tunes In Style

wifi_radio

Instructables user [Jan] likes listening to music while hacking away in his workshop, but listening to the same CDs gets tired and boring after awhile. He contemplated listening to streaming audio over the Internet, but hated the idea of needing a computer around at all times. After a bit of reading, he found some information about building a WiFi radio, and got started on constructing his own.

Using a guide he found at the MightyOhm, he hacked an Asus router to use OpenWRT, adding a music player daemon to tune in various stations. He added a small LCD display and an ATmega32 to drive it, as well as a rotary encoder to allow him to switch between stations.

The case was built using several layers of  MDF which were cut using a CNC mill, and joined together with glue and wooden dowels. The front and back panels were milled out of  alucobond sheets, with the remainder of the case covered in white wood veneer. The detail that went into this build is great, we especially love the “WiFi Symbol” speaker grilles.

All of his code and schematics are available for download, should you desire to make a WiFi radio of your own. Stick around to see a video of his completed radio in action.

[via MightyOhm]

Continue reading “WiFi Radio Plays Your Tunes In Style”

RF Range Finder Doesn’t Need To See To Calculate Distance

radio_rangefinder

Instructables user [Jones Electric] has been quite busy lately, building a radio-frequency range finder. Built as part of a German youth science competition, he and his partner built a pair of transmitter/receiver modules that can be used to measure distances of up to a mile (~1.5km). Their argument for radio-based rangefinders is that laser rangefinders are obviously limited to line of sight, whereas their range finders are not.

To determine the distance between the two stations, the base station is triggered, which starts a counter and sends a 433 MHz signal to the second station. When the second station receives the signal, it in turn broadcasts an 868 MHz signal, which is received by the base station. The total distance between the points is then calculated based upon the round trip time of the two radio signals.

[Jones Electric] claims that the range finder is relatively accurate, with a deviation of up to 5 meters per measurement, and that the accuracy could be increased by adding a higher frequency crystal to the timing circuit.

We are pretty sure using these two frequencies in the US without a license is not allowed, though we are unsure of the usage laws in Germany, where this was constructed.

RFID-based HTPC Controller Gets A Wireless Refresh

RFiDJ_Refresh

[roteno] recently wrote in to let us know that he has completed work on the RFiDJ Refresh, a follow up to his 2009 project, the RFiDJ.

The concept is pretty simple – he has a set of RFID enabled tiles, which contain references to particular online streaming audio stations. He uses these tiles to tune into audio feeds on his HTPC by placing them on a block containing an RFID reader.

His previous implementation had the RFID reader tethered to his HTPC, which didn’t make it all that convenient to use. The newer version utilizes a 433 MHz transmitter/receiver pair in order to communicate with the PC, so it can be used anywhere through out his house. The reader and transmitter were placed in a shadow box picture frame, along with a rechargeable Li-poly battery that powers the whole setup. He also mentions that he has added a tactile interface that allows him to initiate mobile phone calls from the RFiDJ as well.

It’s a nice update to an already great project. We imagine it’s a bit more fun for [roteno] and his guests to tap a coaster on the transmitter box than fumble with a remote to change radio stations on the HTPC, but that’s just us.

Check out the videos below to see his new setup in action.

Continue reading “RFID-based HTPC Controller Gets A Wireless Refresh”