Wave-Powered Glider Delivers Your Message In A Bottle

Setting a bottle adrift with a message in it is, by most measures, an act of desperation. The sea regularly swats mighty ships to their doom, so what chance would a tiny glass bottle have bobbing along the surface, subject as it is to wind, waves, and current? Little to none, it would seem, unless you skew the odds a bit with a wave-powered undersea glider to the help the bottle along.

Before anyone gets too worked up about this, [Rulof Maker]’s “Sea Glider” is about a low-tech as a device with moving parts can be. This craft, built from a scrap of teak and a busted wooden ruler, is something that could be assembled in a few hours from whatever you have on hand, even if you’re marooned on an uncharted desert isle. The body of the craft sprouts a set of horizontal planes that can swivel up and down independently. The key to providing a modicum of thrust is that each plane is limited to a 90° swing by stop blocks above and below the pivot. The weighted glider, tethered to the bottle, bobs up and down below the waves, flapping the planes and providing a tiny bit of thrust.

Was it enough to propel the bottle any great distance? We won’t ruin the surprise, but we will say that [Rulof]’s essentially zero-cost build appears to have improved the message in a bottle bandwidth at least somewhat. It’s not a Hackaday Prize-winning robotic sea glider, but it’s a neat hack nonetheless.

Continue reading “Wave-Powered Glider Delivers Your Message In A Bottle”

Hacking When It Counts: Setting Sail in a Submarine

By the early 20th century, naval warfare was undergoing drastic technological changes. Ships were getting better and faster engines and were being outfitted with wireless communications, while naval aviation was coming into its own. The most dramatic changes were taking place below the surface of the ocean, though, as brave men stuffed themselves into steel tubes designed to sink and, usually, surface, and to attack by stealth and cunning rather than brute force. The submarine was becoming a major part of the world’s navies, albeit a feared and hated one.

For as much animosity as there was between sailors of surface vessels and those that chose the life of a submariner, and for as vastly different as a battleship or cruiser seems from a submarine, they all had one thing in common: the battle against the sea. Sailors and their ships are always on their own dealing with forces that can swat them out of existence in an instant. As a result, mariners have a long history of doing whatever it takes to get back to shore safely — even if that means turning a submarine into a sailboat.

Continue reading “Hacking When It Counts: Setting Sail in a Submarine”

Let’s Talk About Elon Musk’s Submarine

When word first broke that Elon Musk was designing a kid-sized submarine to help rescue the children stuck in Thailand’s Tham Luang cave, it seemed like a logical thing for Hackaday to cover. An eccentric builder of rockets and rocket-launched electric sports cars, pushing his engineering teams and not inconsiderable financial resources into action to save children? All of that talk about Elon being a real life Tony Stark was about to turn from meme into reality; if the gambit paid off, the world might have it’s first true superhero.

With human lives in the balance, and success of the rescue attempt far from assured (regardless of Elon’s involvement), we didn’t feel like playing arm-chair engineer at the time. Everyone here at Hackaday is thankful that due to the heroics of the rescuers, including one who paid the ultimate price, all thirteen lives were saved.

Many said it couldn’t be done, others said even saving half of the children would have been a miracle. But Elon’s submarine, designed and built at a breakneck pace and brought to Thailand while some of the children were still awaiting rescue, laid unused. It wasn’t Elon’s advanced technology that made the rescue possible, it was the tenacity of the human spirit.

Now, with the rescue complete and the children well on their way to returning to their families, one is left wondering about Elon’s submarine. Could it have worked?

Continue reading “Let’s Talk About Elon Musk’s Submarine”

Gentle Electric Eel

It’s no shock that electric eels get a bad rap for being scary creatures. They are slithery fleshy water snakes who can call down lightning. Biologists and engineers at the University of California had something else in mind when they designed their electric eel. Instead of hunting fish, this one swims harmlessly alongside them.

Traditional remotely operated vehicles have relied on hard shells and spinning propellers. To marine life, this is noisy and unnatural. A silent swimmer doesn’t raise any eyebrows, not that fish have eyebrows. The most innovative feature is the artificial muscles, and although the details are scarce, they seem to use a medium on the inside to conduct a charge, and on the outside, the saltwater environment conducts an opposite charge which causes a contraction in the membrane between to the inside and outside. Some swimming action can be seen below the break, and maybe one of our astute readers can shed some light on this underwater adventurer’s bill of materials.

One of our favorite submarines is the 2017 Hackaday Prize winner, The Open Source Underwater Glider. For a more artistic twist on submersibles, the Curv II is one of the most elegant we have seen.

Continue reading “Gentle Electric Eel”

Hackaday Prize Entry: Underwater Glider Offers Low-Power Exploration

[Alex Williams] created his Open Source Underwater Glider project as an entry to The Hackaday Prize, and now it’s one of our twenty finalists. This sweet drone uses motor-actuated syringes to serve as a ballast tank, which helps the glider move forward without the use of traditional propellers.

Unlike most UAVs, which use motors to actively move the craft around, [Alex]’s glider uses the syringes to change the buoyancy of the craft, and it simply glides around on its wings. When the craft starts getting too deep, the syringes push out the water and the glider rises toward the surface until it’s ready for another glide.

This low-power solution allows for long-term science projects and research. In addition to conserving power, the glider’s slow travel does not disturb the water or sea life.

[Alex]’s goal is to make his glider open source and 3D printable, combined with off-the-shelf hardware and ArduSub under the hood.

Continue reading “Hackaday Prize Entry: Underwater Glider Offers Low-Power Exploration”

Humans May Have Accidentally Created a Radiation Shield Around Earth

 

NASA spends a lot of time researching the Earth and its surrounding space environment. One particular feature of interest are the Van Allen belts, so much so that NASA built special probes to study them! They’ve now discovered a protective bubble they believe has been generated by human transmissions in the VLF range.

VLF transmissions cover the 3-30 kHz range, and thus bandwidth is highly limited. VLF hardware is primarily used to communicate with submarines, often to remind them that, yes, everything is still fine and there’s no need to launch the nukes yet.  It’s also used for navigation and broadcasting time signals.

It seems that this human transmission has created a barrier of sorts in the atmosphere that protects it against radiation from space. Interestingly, the outward edge of this “VLF Bubble” seems to correspond very closely with the innermost edge of the Van Allen belts caused by Earth’s magnetic field. What’s more, the inner limit of the Van Allan belts now appears to be much farther away from the Earth’s surface than it was in the 1960s, which suggests that man-made VLF transmissions could be responsible for pushing the boundary outwards.

Continue reading “Humans May Have Accidentally Created a Radiation Shield Around Earth”

PVC Submersible ROV

[mark.brubaker.1] and his crew decided to make a submersible for a school project using PVC pipes as a frame. It has two motors on the back to provide forward thrust and steering as well as a horizontal mounted motor in the middle of the PVC chassis to provide up and down thrust. They used regular motors which they waterproofed by inserting them inside a case full of plumbers wax. We’re not sure how long this will hold at the bottom of the ocean, but it works fine for a school project in the pool. Here’s the instructions on how to make one.

The build is completely analog, the controller is a board with three switches which individually control the different motors. So if you want to turn left, you fired up the right motor. For right you do the opposite and fire up the left motor. Up and down, well, you get the picture. If you have a swimming pool, lake or some water body nearby and you’re looking for a weekend project with your kids, this is a great tip. It’s not an Arduino controlled robot fish, but it’s a first step in that direction; you can later on use the frame to improve on the design and add some electronics.

Continue reading “PVC Submersible ROV”