Hackaday Prize Semifinalist: Playing With PIDs

PID control loops are everywhere, found in flight controllers for drones and the temperature control code for 3D printers. How do you teach PID control loops? [Tim] has a great demonstration for this, and it’s also a semifinalist for the Hackaday Prize.

[Tim]’s Sab3t is an educational tool designed to illustrate how PID control loops work. It’s a robotic table on which a large ball bearing sits perfectly balanced. On this table is a resistive touch screen from a display providing feedback for the location of the ball bearing. By adjusting PID values, the ball bearing either sits stationary on the table or flails wildly around, depending on the values in the PID algorithm being used.

As a teaching tool, it’s great; with a python script displaying a log of the PID values and the position of the ball on the plate, anyone can easily visualize how oscillations happen, what a well-tuned control loop looks like, and have some fun moving the ball bearing around to different locations.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Playing With PIDs”

Hackaday Prize Semifinalist: Conserving Water And Eliminating Daydreaming

[mulcmu], we suppose, frequently wastes a lot of water while daydreaming in the shower. While daydreaming in the shower one day, we suppose again, he came up with the idea of keeping on task while in the shower. Thus was born the shower metronome, [mulcmu]’s entry for The Hackaday Prize.

The goal of the shower metronome is two-fold. First, it reduces the amount of water used in the shower. Secondly, it keeps the user on time for work. The shower metronome does this with a small audio beep provided by a small microcontroller attached to the shower frame or shower curtain.

The guts of the device are an MSP430 microcontroller, a few coin cell batteries, and a hall effect sensor that turns the device on, just like a magnetic door or window alarm. The microcontroller choice is perfect for the application; the MSP430 is extremely low power, and the device only draws 1uA in low power mode. This means the shower metronome will last a while when used only a few minutes a day.

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Semifinalist: Picking Up Litter With Robots

On beaches, in parks, and in [BDM]’s back yard, there’s a lot of liter everywhere. The normal solution to this problem is to hire someone or find some volunteers to pick up all this trash. We’re living in the future, though, and that means robots. For his Hackaday Prize entry, [BDM] is building a robot that picks up trash.

A robot that picks up litter is a very, very interesting problem. It can’t be controlled by a person, or else it would be more efficient to just get out there and kill your back picking up bottles. This means it must work autonomously, and that means identifying litter, picking it up, and disposing of it.

For the identification part of the problem, [BDM] is using computer vision that captures an RGB image and discriminates against natural objects. Right now the computer vision is far from perfect, but it does a very good job, all things considering.

The next biggest problem is picking the trash up and disposing of it. For this, [BDM] has repurposed a Power Wheels and attached a DIY robot arm. It’s not a very powerful arm, and a children’s toy probably isn’t the best platform, but it is the start of something very, very cool.

You can check out [BDM]’s video for the project below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Picking Up Litter With Robots”

Hackaday Prize Semifinalist: A Low Cost, DIY Fuel Cell

Electronic cars and planes are the wave of the future, or so we’re told, but if you do the math on power densities, the future looks bleak. Outside of nuclear power, you can’t beat the power density of liquid hydrocarbons, and batteries are terrible stores of energy. How then do we tap the potential of high density fuels while still being environmentally friendly? With [Lloyd]’s project for The Hackaday Prize, a low cost hydrogen fuel cell.

Traditionally, fuel cells have required expensive platinum electrodes to turn hydrogen and oxygen into steam and electricity. Recent advances in nanotechnology mean these electrodes may be able to be produced at a very low cost.

For his experiments, [Lloyd] is using sulfonated para-aramids – Kevlar cloth, really – for the proton carrier of the fuel cell. The active layer is made from asphaltenes, a waste product from tar sand extraction. Unlike platinum, the materials that go into this fuel cell are relatively inexpensive.

[Lloyd]’s fuel cell can fit in the palm of his hand, and is predicted to output 20A at 18V. That’s doesn’t include the tanks for supplying hydrogen or any of the other system ephemera, but it is an incredible amount of energy in a small package.

You can check out [Lloyd]’s video for the Hackaday Prize below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: A Low Cost, DIY Fuel Cell”

Hackaday Prize Semifinalist: A Mobile Node

The future is the Internet of Things, or so we’re told, and with that comes the requirement for sensors attached to the Internet that also relay GPS and location data. [Camilo]’s MobileNodes do just that. He’s designed a single device that will listen to any sensor, upload that data to the Internet over GSM or GPRS, and push all that data to the cloud.

The MobileNode is a small circular (7cm) PCB with a standard ATMega32u4 microcontroller. Attached to this PCB are GSM/GPRS and GPS/GLONASS modules to receive GPS signals and relay all that data to the cloud. To this, just about any sensor can be added, including light sensors, PIR sensors, gas and temperature sensors, and just about anything else that can be measured electronically.

Of course the biggest problem with a bunch of sensors on an Internet of Things device is pulling the data from the Internet. For that, [Camilo] designed a web interface that shows sensor data directly on a Google Map. You can check out the project video below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: A Mobile Node”

Hackaday Prize Semifinalist: Low Cost Radiography

For the past year, [Adam] has been working full-time on developing a low-cost x-ray system for developing nations. He has more than 3,500 hours into the project. A few months ago, we announced the 2015 Hackaday Prize, with a theme of, ‘build something that matters.’ A low-cost x-ray would certainly matter to the two-thirds of the world’s population that does not have access to medical radiography, making this project a great entry for The Hackaday Prize.

[Adam]’s portable x-ray system consists of an x-ray tube encased in an epoxied, 3D printed enclosure filled with dialectric oil. This tube is tucked away inside a beautiful case with just a single 12VDC input and an easy to understand user manual. This is just very high voltages and x-rays, nothing [Adam] hasn’t handled (safely) before. The real trick is in the imaging, and for this, [Adam] is using a phosphor screen to turn that x-ray exposure into something visible, an off the shelf x-ray sensor, and a prism to adapt the sensor to the phosphor screen.

The results are incredible. After taking a few pictures of what he had on hand, [Adam] can see the bond wires inside the microprocessor of a calculator. That’s more than sufficient for medical imaging – the goal of the project – and cheap enough to send it to the far-flung reaches of the planet.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Low Cost Radiography”

Hackaday Prize Semifinalist: Bendy Solar Bluetooth Tags

Last January, [DrYerzina]’s sister couldn’t find her cat. The family searched the neighborhood for two hours until the cat came out from underneath a bed, proving once again cats own humans, not the other way around. A solution to this problem would come in the form of technology, specifically as [DrYerzinia]’s entry for the Hackaday Prize, a solar-powered Bluetooth tracking device. Yes, you can go on Amazon or eBay and buy a BLE tracker, but this version comes in a handy package: it’s built of a flexible circuit board to fit just about everywhere, including on the collar of a cat.

[DrYerzina]’s Bluetooth tracker is built around an Bluetooth LE module, with a few added passives, LEDs, and other parts glued and soldered onto a double sided, flexible PCB. To this, he’s added a flexible solar cell and a flexible LiPo battery. All of this is stuffed inside an enclosure 3D printed in flexible filament.

While the Hackaday Prize is filled with wearables, [DrYerzina]’s project is at the forefront of hombrew wearable technology. Nowhere else in the prize have we seen a dedication to making a device that bends. The best part is, he’s actually building a useful device; with just 15 minutes of sunlight a day (a condition very likely for a sleeping cat), this Bluetooth tag can work for weeks.

The 2015 Hackaday Prize is sponsored by: